
Kuo-Chiang Hsia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4506894/publications.pdf Version: 2024-02-01

KUO-CHIANC HSIA

#	Article	IF	CITATIONS
1	Phase separation and zinc-induced transition modulate synaptic distribution and association of autism-linked CTTNBP2 and SHANK3. Nature Communications, 2022, 13, 2664.	12.8	17
2	More than a zip code: global modulation of cellular function by nuclear localization signals. FEBS Journal, 2021, 288, 5569-5585.	4.7	13
3	Promiscuous Binding of Microprotein Mozart1 to ^{ĵ3} -Tubulin Complex Mediates Specific Subcellular Targeting to Control Microtubule Array Formation. Cell Reports, 2020, 31, 107836.	6.4	15
4	MZT Proteins Form Multi-Faceted Structural Modules in the Î ³ -Tubulin Ring Complex. Cell Reports, 2020, 31, 107791.	6.4	42
5	Karyopherin Kap114pâ€mediated transâ€repression controls ribosomal gene expression under saline stress. EMBO Reports, 2020, 21, e48324.	4.5	11
6	Microtubule polymerization in alignment by an on-chip temperature gradient platform. Sensors and Actuators B: Chemical, 2019, 298, 126813.	7.8	3
7	Ran pathway-independent regulation of mitotic Golgi disassembly by Importin-α. Nature Communications, 2019, 10, 4307.	12.8	16
8	Generation of FHL2 homozygous knockout lines from human embryonic stem cells by CRISPR/Cas9-mediated ablation. Stem Cell Research, 2018, 27, 21-24.	0.7	3
9	Regulation of mitotic spindle assembly factor NuMA by Importin-β. Journal of Cell Biology, 2017, 216, 3453-3462.	5.2	31
10	Asymmetric Friction of Non-Motor Maps can lead to their Directional Motion in Active Microtubule Networks. Biophysical Journal, 2015, 108, 450a.	0.5	1
11	Reconstitution of the augmin complex provides insights into its architecture and function. Nature Cell Biology, 2014, 16, 852-863.	10.3	69
12	Asymmetric Friction of Nonmotor MAPs Can Lead to Their Directional Motion in Active Microtubule Networks. Cell, 2014, 157, 420-432.	28.9	75
13	Asymmetric Force Response Reveals Mechanical Role in Spindle Protein Localization. Biophysical Journal, 2013, 104, 551a.	0.5	0
14	Crystal structure of α-COP in complex with Ϊμ-COP provides insight into the architecture of the COPI vesicular coat. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 11271-11276.	7.1	45
15	Characterization of the membrane-coating Nup84 complex. Nucleus, 2010, 1, 150-157.	2.2	9
16	Characterization of the membrane-coating Nup84 complex: Paradigm for the nuclear pore complex structure. Nucleus, 2010, 1, 150-157.	2.2	9
17	Structure of a trimeric nucleoporin complex reveals alternate oligomerization states. Proceedings of the United States of America, 2009, 106, 17693-17698.	7.1	57
18	Metal ions and phosphate binding in the H-N-H motif: Crystal structures of the nuclease domain of ColE7/Im7 in complex with a phosphate ion and different divalent metal ions. Protein Science, 2009, 11, 2947-2957.	7.6	51

Kuo-Chiang Hsia

#	Article	IF	CITATIONS
19	A Fence-like Coat for the Nuclear Pore Membrane. Molecular Cell, 2008, 32, 815-826.	9.7	117
20	Architecture of a Coat for the Nuclear Pore Membrane. Cell, 2007, 131, 1313-1326.	28.9	124
21	Crystal structural analysis and metal-dependent stability and activity studies of the ColE7 endonuclease domain in complex with DNA/Zn2+ or inhibitor/Ni2+. Protein Science, 2006, 15, 269-280.	7.6	41
22	Structural and functional insight into cell-defending non-specific nucleases. Acta Crystallographica Section A: Foundations and Advances, 2005, 61, c85-c85.	0.3	0
23	Structural and functional insight into sugar-nonspecific nucleases in host defense. Current Opinion in Structural Biology, 2005, 15, 126-134.	5.7	65
24	DNA Binding and Degradation by the HNH Protein ColE7. Structure, 2004, 12, 205-214.	3.3	58
25	The Crystal Structure of the Nuclease Domain of Colicin E7 Suggests a Mechanism for Binding to Double-stranded DNA by the H–N–H Endonucleases. Journal of Molecular Biology, 2002, 324, 227-236.	4.2	54
26	Isolation of an Insertion Sequence from Ralstonia solanacearum Race 1 and Its Potential Use for Strain Characterization and Detection. Applied and Environmental Microbiology, 2001, 67, 3943-3950.	3.1	18