Jiri Kopacek

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4506756/jiri-kopacek-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

155
papers

5,456
citations

h-index

67
g-index

159
ext. papers

6,123
ext. citations

5.7
avg, IF

L-index

#	Paper	IF	Citations
155	Forest damage and subsequent recovery alter the water composition in mountain lake catchments <i>Science of the Total Environment</i> , 2022 , 154293	10.2	1
154	Identifying factors that affect mountain lake sensitivity to atmospheric nitrogen deposition across multiple scales. <i>Water Research</i> , 2021 , 209, 117883	12.5	0
153	Temporal trends and spatial patterns of chironomid communities in alpine lakes recovering from acidification under accelerating climate change. <i>Freshwater Biology</i> , 2021 , 66, 2223	3.1	1
152	Biogeochemical causes of sixty-year trends and seasonal variations of river water properties in a large European basin. <i>Biogeochemistry</i> , 2021 , 154, 81-98	3.8	2
151	Relationships between a catchment-scale forest disturbance index, time delays, and chemical properties of surface water. <i>Ecological Indicators</i> , 2021 , 125, 107558	5.8	2
150	Effect of snowmelt on the dynamics, isotopic and chemical composition of runoff in mature and regenerated forested catchments. <i>Journal of Hydrology</i> , 2021 , 598, 126437	6	2
149	Coupling the resource stoichiometry and microbial biomass turnover to predict nutrient mineralization and immobilization in soil. <i>Geoderma</i> , 2021 , 385, 114884	6.7	12
148	Diverse effects of accelerating climate change on chemical recovery of alpine lakes from acidic deposition in soil-rich versus scree-rich catchments. <i>Environmental Pollution</i> , 2021 , 284, 117522	9.3	2
147	Cleaner air reveals growing influence of climate on dissolved organic carbon trends in northern headwaters. <i>Environmental Research Letters</i> , 2021 , 16, 104009	6.2	7
146	Small-scale chemical and isotopic variability of hydrological pathways in a mountain lake catchment. <i>Journal of Hydrology</i> , 2020 , 585, 124834	6	11
145	Only the adults survive IA long-term resistance of IsoEes lacustris to acidity and aluminium toxicity stress in a Bohemian Forest lake. <i>Ecological Indicators</i> , 2020 , 111, 106026	5.8	1
144	Changes in microclimate and hydrology in an unmanaged mountain forest catchment after insect-induced tree dieback. <i>Science of the Total Environment</i> , 2020 , 720, 137518	10.2	7
143	Solar Radiation as the Likely Cause of Acid-Soluble Rare-Earth Elements in Sediments of Fresh Water Humic Lakes. <i>Environmental Science & Eamp; Technology</i> , 2020 , 54, 1545-1553	10.3	3
142	Disruptions and re-establishment of the calcium-bicarbonate equilibrium in freshwaters. <i>Science of the Total Environment</i> , 2020 , 743, 140626	10.2	3
141	Climate change accelerates recovery of the Tatra Mountain lakes from acidification and increases their nutrient and chlorophyll a concentrations. <i>Aquatic Sciences</i> , 2019 , 81, 1	2.5	9
140	The chemical composition of forest soils and their degree of acidity in Central Europe. <i>Science of the Total Environment</i> , 2019 , 687, 96-103	10.2	5
139	Decreasing litterfall mercury deposition in central European coniferous forests and effects of bark beetle infestation. <i>Science of the Total Environment</i> , 2019 , 682, 213-225	10.2	17

(2017-2019)

138	Lacustrine systems of Clearwater Mesa (James Ross Island, north-eastern Antarctic Peninsula): geomorphological setting and limnological characterization. <i>Antarctic Science</i> , 2019 , 31, 169-188	1.7	7	
137	Effects of tree dieback on lake water acidity in the unmanaged catchment of PlefilLake, Czech Republic. <i>Limnology and Oceanography</i> , 2019 , 64, 1614-1626	4.8	6	
136	Mountain lakes: Eyes on global environmental change. <i>Global and Planetary Change</i> , 2019 , 178, 77-95	4.2	93	
135	Widespread diminishing anthropogenic effects on calcium in freshwaters. <i>Scientific Reports</i> , 2019 , 9, 10450	4.9	38	
134	Effects of Bark Beetle Disturbance on Soil Nutrient Retention and Lake Chemistry in Glacial Catchment. <i>Ecosystems</i> , 2019 , 22, 725-741	3.9	12	
133	Tree dieback and related changes in nitrogen dynamics modify the concentrations and proportions of cations on soil sorption complex. <i>Ecological Indicators</i> , 2019 , 97, 319-328	5.8	10	
132	Photochemical degradation of dissolved organic matter reduces the availability of phosphorus for aquatic primary producers. <i>Chemosphere</i> , 2018 , 193, 1018-1026	8.4	9	
131	Factors Affecting the Leaching of Dissolved Organic Carbon after Tree Dieback in an Unmanaged European Mountain Forest. <i>Environmental Science & Environmental Science & Envir</i>	10.3	11	
130	In situ phosphorus dynamics in soil: long-term ion-exchange resin study. <i>Biogeochemistry</i> , 2018 , 139, 307-320	3.8	6	
129	Multiple long-term trends and trend reversals dominate environmental conditions in a man-made freshwater reservoir. <i>Science of the Total Environment</i> , 2018 , 624, 24-33	10.2	13	
128	Increased spruce tree growth in Central Europe since 1960s. <i>Science of the Total Environment</i> , 2018 , 619-620, 1637-1647	10.2	17	
127	Changes in surface water chemistry caused by natural forest dieback in an unmanaged mountain catchment. <i>Science of the Total Environment</i> , 2017 , 584-585, 971-981	10.2	31	
126	Climate Change Increasing Calcium and Magnesium Leaching from Granitic Alpine Catchments. <i>Environmental Science & Environmental Science & Environment</i>	10.3	25	
125	Trends in riverine element fluxes: A chronicle of regional socio-economic changes. <i>Water Research</i> , 2017 , 125, 374-383	12.5	10	
124	Environmental factors exert strong control over the climate-growth relationships of Picea abies in Central Europe. <i>Science of the Total Environment</i> , 2017 , 609, 506-516	10.2	33	
123	Photochemical cleaving of allochthonous organic-metal complexes contributes to phosphorus immobilization in surface waters. <i>Chemosphere</i> , 2017 , 167, 374-381	8.4	7	
122	Recovery of brown trout populations in streams exposed to atmospheric acidification in the Bohemian Forest. <i>Folia Zoologica</i> , 2017 , 66, 1-10	1.3	2	
121	Long-term trends of phosphorus concentrations in an artificial lake: Socio-economic and climate drivers. <i>PLoS ONE</i> , 2017 , 12, e0186917	3.7	17	

120	Discerning environmental factors affecting current tree growth in Central Europe. <i>Science of the Total Environment</i> , 2016 , 573, 541-554	10.2	28
119	Predicting sulphur and nitrogen deposition using a simple statistical method. <i>Atmospheric Environment</i> , 2016 , 140, 456-468	5.3	29
118	The sensitivity of water chemistry to climate in a forested, nitrogen-saturated catchment recovering from acidification. <i>Ecological Indicators</i> , 2016 , 63, 196-208	5.8	20
117	Long-term dynamics of watershed leaching and lake sediment sequestration of rare earth elements following deglaciation of two mountain watersheds. <i>Journal of Paleolimnology</i> , 2016 , 55, 209-222	2.1	4
116	A comparative study of long-term Hg and Pb sediment archives. <i>Environmental Chemistry</i> , 2016 , 13, 517	3.2	16
115	Lake water acidification and temperature have a lagged effect on the population dynamics of IsoEes echinospora via offspring recruitment. <i>Ecological Indicators</i> , 2016 , 70, 420-430	5.8	12
114	Constraints on the biological recovery of the Bohemian Forest lakes from acid stress. <i>Freshwater Biology</i> , 2016 , 61, 376-395	3.1	16
113	Measurement of in situ Phosphorus Availability in Acidified Soils using Iron-Infused Resin. <i>Communications in Soil Science and Plant Analysis</i> , 2016 , 1-8	1.5	1
112	Effect of industrial dust on precipitation chemistry in the Czech Republic (Central Europe) from 1850 to 2013. <i>Water Research</i> , 2016 , 103, 30-37	12.5	37
111	Carbon pools in a montane old-growth Norway spruce ecosystem in Bohemian Forest: Effects of stand age and elevation. <i>Forest Ecology and Management</i> , 2015 , 346, 106-113	3.9	28
110	Assessment of phosphorus associated with Fe and Al (hydr)oxides in sediments and soils. <i>Journal of Soils and Sediments</i> , 2015 , 15, 1620-1629	3.4	20
109	Modelling inorganic nitrogen in runoff: Seasonal dynamics at four European catchments as simulated by the MAGIC model. <i>Science of the Total Environment</i> , 2015 , 536, 1019-1028	10.2	10
108	Catchment biogeochemistry modifies long-term effects of acidic deposition on chemistry of mountain lakes. <i>Biogeochemistry</i> , 2015 , 125, 315-335	3.8	17
107	Consequence of altered nitrogen cycles in the coupled human and ecological system under changing climate: The need for long-term and site-based research. <i>Ambio</i> , 2015 , 44, 178-93	6.5	49
106	Effects of acidic deposition on in-lake phosphorus availability: a lesson from lakes recovering from acidification. <i>Environmental Science & Environmental Science & Environme</i>	10.3	38
105	Excess of Organic Carbon in Mountain Spruce Forest Soils after Bark Beetle Outbreak Altered Microbial N Transformations and Mitigated N-Saturation. <i>PLoS ONE</i> , 2015 , 10, e0134165	3.7	28
104	Sulphate leaching from diffuse agricultural and forest sources in a large central European catchment during 1900-2010. <i>Science of the Total Environment</i> , 2014 , 470-471, 543-50	10.2	20
103	Acid Rain 🖟 Cidification and Recovery 2014 , 379-414		8

(2011-2014)

102	A mass-balance study on chloride fluxes in a large central European catchment during 1900\(\textbf{0}\)010. Biogeochemistry, 2014 , 120, 319-335	3.8	11
101	Changes in Soil Dissolved Organic Carbon Affect Reconstructed History and Projected Future Trends in Surface Water Acidification. <i>Water, Air, and Soil Pollution</i> , 2014 , 225, 1	2.6	13
100	Seasonal photochemical transformations of nitrogen species in a forest stream and lake. <i>PLoS ONE</i> , 2014 , 9, e116364	3.7	10
99	Littoral macroinvertebrates of acidified lakes in the Bohemian Forest. <i>Biologia (Poland)</i> , 2014 , 69, 1190-	1291	4
98	Assessing recovery from acidification of European surface waters in the year 2010: evaluation of projections made with the MAGIC model in 1995. <i>Environmental Science & Environmental Science & Envir</i>	10.3	22
97	Forest die-back modified plankton recovery from acidic stress. <i>Ambio</i> , 2014 , 43, 207-17	6.5	6
96	Global change revealed by palaeolimnological records from remote lakes: a review. <i>Journal of Paleolimnology</i> , 2013 , 49, 513-535	2.1	137
95	Nitrogen, organic carbon and sulphur cycling in terrestrial ecosystems: linking nitrogen saturation to carbon limitation of soil microbial processes. <i>Biogeochemistry</i> , 2013 , 115, 33-51	3.8	68
94	What do results of common sequential fractionation and single-step extractions tell us about P binding with Fe and Al compounds in non-calcareous sediments?. <i>Water Research</i> , 2013 , 47, 547-57	12.5	31
93	Factors controlling the export of nitrogen from agricultural land in a large central European catchment during 1900-2010. <i>Environmental Science & Environmental Science & Env</i>	10.3	46
92	Response of soil chemistry to forest dieback after bark beetle infestation. <i>Biogeochemistry</i> , 2013 , 113, 369-383	3.8	43
91	Quantifying nitrogen leaching from diffuse agricultural and forest sources in a large heterogeneous catchment. <i>Biogeochemistry</i> , 2013 , 115, 149-165	3.8	10
90	Freshwater lakes of Ulu Peninsula, James Ross Island, north-east Antarctic Peninsula: origin, geomorphology and physical and chemical limnology. <i>Antarctic Science</i> , 2013 , 25, 358-372	1.7	54
89	Modelling soil nitrogen: the MAGIC model with nitrogen retention linked to carbon turnover using decomposer dynamics. <i>Environmental Pollution</i> , 2012 , 165, 158-66	9.3	40
88	An elevation-based regional model for interpolating sulphur and nitrogen deposition. <i>Atmospheric Environment</i> , 2012 , 50, 287-296	5.3	29
87	Spatial and temporal changes of benthic macroinvertebrate assemblages in acidified streams in the Bohemian Forest (Czech Republic). <i>Aquatic Insects</i> , 2012 , 34, 157-172	0.5	4
86	Biomass and element pools of selected spruce trees in the catchments of Plešné and 🛘 tovo Lakes in the Šumava Mts <i>Journal of Forest Science</i> , 2012 , 52, 482-495	0.9	6
85	Anthropogenic nitrogen emissions during the Holocene and their possible effects on remote ecosystems. Global Biogeochemical Cycles, 2011, 25, n/a-n/a	5.9	31

84	The controls on phosphorus availability in a Boreal lake ecosystem since deglaciation. <i>Journal of Paleolimnology</i> , 2011 , 46, 107-122	2.1	36
83	Phosphorus loading of mountain lakes: Terrestrial export and atmospheric deposition. <i>Limnology and Oceanography</i> , 2011 , 56, 1343-1354	4.8	36
82	Phosphate Sorption Characteristics of European Alpine Soils. <i>Soil Science Society of America Journal</i> , 2011 , 75, 862-870	2.5	12
81	Interaction of Climate Change and Acid Deposition 2010 , 152-179		5
80	Experimental photochemical release of organically bound aluminum and iron in three streams in Maine, USA. <i>Environmental Monitoring and Assessment</i> , 2010 , 171, 71-81	3.1	14
79	CELL-SPECIFIC EXTRACELLULAR PHOSPHATASE ACTIVITY OF DINOFLAGELLATE POPULATIONS IN ACIDIFIED MOUNTAIN LAKES1. <i>Journal of Phycology</i> , 2010 , 46, 635-644	3	9
78	Canopy leaching of nutrients and metals in a mountain spruce forest. <i>Atmospheric Environment</i> , 2009 , 43, 5443-5453	5.3	42
77	Nitrogen transformations and pools in N-saturated mountain spruce forest soils. <i>Biology and Fertility of Soils</i> , 2009 , 45, 395-404	6.1	15
76	Regionalisation of chemical variability in European mountain lakes. Freshwater Biology, 2009, 54, 2452-7	2469	66
75	Trends in aluminium export from a mountainous area to surface waters, from deglaciation to the recent: effects of vegetation and soil development, atmospheric acidification, and nitrogen-saturation. <i>Journal of Inorganic Biochemistry</i> , 2009 , 103, 1439-48	4.2	32
74	Photochemical release of humic and fulvic acid-bound metals from simulated soil and streamwater. Journal of Environmental Monitoring, 2009, 11, 1064-71		24
73	UV photoinitiated changes of humic fluorophores, influence of metal ions. <i>Photochemical and Photobiological Sciences</i> , 2009 , 8, 582-6	4.2	
72	Speciation of Al, Fe, and P in recent sediment from three lakes in Maine, USA. <i>Science of the Total Environment</i> , 2008 , 404, 276-83	10.2	33
71	Proton production by transformations of aluminium and iron in lakes. Water Research, 2008, 42, 1220-8	12.5	10
70	Predicting long-term recovery of a strongly acidified stream using MAGIC and climate models (Litavka, Czech Republic). <i>Hydrology and Earth System Sciences</i> , 2008 , 12, 479-490	5.5	7
69	Carbon isotopes in tree rings of Norway spruce exposed to atmospheric pollution. <i>Environmental Science & Environmental Scienc</i>	10.3	27
68	Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. <i>Nature</i> , 2007 , 450, 537-40	50.4	1206
67	Natural inactivation of phosphorus by aluminum in preindustrial lake sediments. <i>Limnology and Oceanography</i> , 2007 , 52, 1147-1155	4.8	37

(2005-2006)

66	Modelling the effect of climate change on recovery of acidified freshwaters: relative sensitivity of individual processes in the MAGIC model. <i>Science of the Total Environment</i> , 2006 , 365, 154-66	10.2	59	
65	Photochemical source of metals for sediments. <i>Environmental Science & Environmental & Environmental Science & Environmental Science & Environmental &</i>	5-£ 0.3	46	
64	Chemical composition of the Tatra Mountain lakes: Response to acidification. <i>Biologia (Poland)</i> , 2006 , 61, S11-S20	1.5	29	
63	Chemical composition of the Tatra Mountain lakes: Recovery from acidification. <i>Biologia (Poland)</i> , 2006 , 61, S21-S33	1.5	55	
62	Pools and composition of soils in the alpine zone of the Tatra Mountains. <i>Biologia (Poland)</i> , 2006 , 61, S35-S49	1.5	10	
61	Chemical composition of modern and pre-acidification sediments in the Tatra Mountain lakes. <i>Biologia (Poland)</i> , 2006 , 61, S65-S76	1.5	8	
60	Element fluxes in watershed-lake ecosystems recovering from acidification: #rtovo Lake, the Bohemian Forest, 2001@005. <i>Biologia (Poland)</i> , 2006 , 61, S413-S426	1.5	19	
59	Element fluxes in watershed-lake ecosystems recovering from acidification: Plefillake, the Bohemian Forest, 2001\(\textbf{Q}\) 005. <i>Biologia (Poland)</i> , 2006 , 61, S427-S440	1.5	23	
58	Biological recovery of the Bohemian Forest lakes from acidification. <i>Biologia (Poland)</i> , 2006 , 61, S453-S	465	28	
57	The long-term succession of cladoceran fauna and palaeoclimate forcing: A 14,600-year record from PlefilLake, the Bohemian Forest. <i>Biologia (Poland)</i> , 2006 , 61, S387-S399	1.5	18	
56	Biomass and element pools of understory vegetation in the catchments of <code>@rtovo</code> Lake and Ple <code>BO</code> Lake in the Bohemian Forest. <i>Biologia (Poland)</i> , 2006 , 61, S509-S521	1.5	23	
55	Estimation of tree biomass of Norway spruce forest in the PlefilLake catchment, the Bohemian Forest. <i>Biologia (Poland)</i> , 2006 , 61, S523-S532	1.5	11	
54	A key role of aluminium in phosphorus availability, food web structure, and plankton dynamics in strongly acidified lakes. <i>Biologia (Poland)</i> , 2006 , 61, S441-S451	1.5	14	
53	Integrated ecological research of catchment-lake ecosystems in the Bohemian Forest (Central Europe): A preface. <i>Biologia (Poland)</i> , 2006 , 61, S363-S370	1.5	6	
52	Impact of Soil Sorption Characteristics and Bedrock Composition on Phosphorus Concentrations in two Bohemian Forest Lakes. <i>Water, Air, and Soil Pollution</i> , 2006 , 173, 243-259	2.6	31	
51	The long-term succession of cladoceran fauna and palaeoclimate forcing: A 14,600¶ear record from Plefi[Lake, the Bohemian Forest 2006 , 61, S387			
50	Photochemical production of ionic and particulate aluminum and iron in lakes. <i>Environmental Science & Environmental Science &</i>	10.3	44	
49	Long-term trends and spatial variability in nitrate leaching from alpine catchment-lake ecosystems in the Tatra Mountains (Slovakia-Poland). <i>Environmental Pollution</i> , 2005 , 136, 89-101	9.3	43	

48	Aluminum control of phosphorus sorption by lake sediments. <i>Environmental Science & Environmental Scie</i>	10.3	147
47	Recovery of acidified European surface waters. <i>Environmental Science & Environmental & Environmental Science & Environmental Science & Environmental </i>	-712 :A 3	103
46	Bacterial and phytoplankton responses to nutrient and pH changes during short term in situ experiments in two acidified lakes. <i>Algological Studies</i> , 2005 , 115, 79-99		
45	Sulfur and nitrogen emissions in the Czech Republic and Slovakia from 1850 till 2000. <i>Atmospheric Environment</i> , 2005 , 39, 2179-2188	5.3	94
44	Acidification in European mountain lake districts: A regional assessment of critical load exceedance. <i>Aquatic Sciences</i> , 2005 , 67, 237-251	2.5	37
43	Increasing silicon concentrations in Bohemian Forest lakes. <i>Hydrology and Earth System Sciences</i> , 2005 , 9, 699-706	5.5	8
42	Acidification in European mountain lake districts: A regional assessment of critical load exceedance 2005 , 67, 237		2
41	Response of alpine lakes and soils to changes in acid deposition: the MAGIC model applied to the Tatra Mountain region, Slovakia-Poland. <i>Journal of Limnology</i> , 2004 , 63, 143	1.5	47
40	Soil biochemical activity and phosphorus transformations and losses from acidified forest soils. <i>Soil Biology and Biochemistry</i> , 2004 , 36, 1569-1576	7·5	41
39	Chemical and Biochemical Characteristics of Alpine Soils in the Tatra Mountains and their Correlation with Lake Water Quality. <i>Water, Air, and Soil Pollution</i> , 2004 , 153, 307-328	2.6	36
38	Seasonal and photochemical changes of DOM in an acidified forest lake and its tributaries. <i>Aquatic Sciences</i> , 2004 , 66, 211-222	2.5	23
37	Nutrient cycling in a strongly acidified mesotrophic lake. <i>Limnology and Oceanography</i> , 2004 , 49, 1202-1	2418	41
36	Increasing temperature decreases aluminum concentrations in Central European lakes recovering from acidification. <i>Limnology and Oceanography</i> , 2003 , 48, 2346-2354	4.8	21
35	Photochemical, chemical, and biological transformations of dissolved organic carbon and its effect on alkalinity production in acidified lakes Ji. <i>Limnology and Oceanography</i> , 2003 , 48, 106-117	4.8	40
34	A modelling assessment of acidification and recovery of European surface waters. <i>Hydrology and Earth System Sciences</i> , 2003 , 7, 447-455	5.5	24
33	Modelling reversibility of Central European mountain lakes from acidification: Part I - the Bohemian forest. <i>Hydrology and Earth System Sciences</i> , 2003 , 7, 494-509	5.5	57
32	Long-term studies (1871-2000) on acidification and recovery of lakes in the Bohemian Forest (central Europe). <i>Science of the Total Environment</i> , 2003 , 310, 73-85	10.2	73
31	Massive occurrence of heterotrophic filaments in acidified lakes: seasonal dynamics and composition. <i>FEMS Microbiology Ecology</i> , 2003 , 46, 281-94	4.3	17

(1996-2003)

30	Modelling reversibility of central European mountain lakes from acidification: Part II Lithe Tatra Mountains. <i>Hydrology and Earth System Sciences</i> , 2003 , 7, 510-524	5.5	19
29	Hysteresis in Reversal of Central European Mountain Lakes from Atmospheric Acidification. <i>Water, Air and Soil Pollution</i> , 2002 , 2, 91-114		47
28	Reconstruction of Long-Term Changes in Lake water Chemistry, Zooplankton and Benthos of a Small, Acidified High-Mountain Lake: Magic Modelling and Palaeolimnogical Analysis. <i>Water, Air and Soil Pollution</i> , 2002 , 2, 127-138		27
27	Seasonal ecosystem variability in remote mountain lakes: implications for detecting climatic signals in sediment records. <i>Journal of Paleolimnology</i> , 2002 , 28, 25-46	2.1	109
26	Impact of ionic aluminium on extracellular phosphatases in acidified lakes. <i>Environmental Microbiology</i> , 2001 , 3, 578-87	5.2	18
25	SPECTROPHOTOMETRIC DETERMINATION OF IRON, ALUMINUM, AND PHOSPHORUS IN SOIL AND SEDIMENT EXTRACTS AFTER THEIR NITRIC AND PERCHLORIC ACID DIGESTION. <i>Communications in Soil Science and Plant Analysis</i> , 2001 , 32, 1431-1443	1.5	38
24	Natural inactivation of phosphorus by aluminum in atmospherically acidified water bodies. <i>Water Research</i> , 2001 , 35, 3783-90	12.5	51
23	Sulphur and nitrogen fluxes and budgets in the Bohemian Forest and Tatra Mountains during the Industrial Revolution (1850-2000). <i>Hydrology and Earth System Sciences</i> , 2001 , 5, 391-406	5.5	70
22	Response of sulphur dynamics in European catchments to decreasing sulphate deposition. <i>Hydrology and Earth System Sciences</i> , 2001 , 5, 311-326	5.5	107
21	Recovery from acidification in European surface waters. <i>Hydrology and Earth System Sciences</i> , 2001 , 5, 283-298	5.5	204
20	Phosorus availability in an acidified watershed-lake ecosystem. <i>Limnology and Oceanography</i> , 2000 , 45, 212-225	4.8	70
19	Factors governing nutrient status of mountain lakes in the Tatra Mountains. <i>Freshwater Biology</i> , 2000 , 43, 369-383	3.1	58
18	Estimation of organic acid anion concentrations and evaluation of charge balance in atmospherically acidified colored waters. <i>Water Research</i> , 2000 , 34, 3598-3606	12.5	37
17	Reversibility of acidification of mountain lakes after reduction in nitrogen and sulphur emissions in Central Europe. <i>Limnology and Oceanography</i> , 1998 , 43, 357-361	4.8	42
16	Trends and seasonal patterns of bulk deposition of nutrients in the Czech Republic. <i>Atmospheric Environment</i> , 1997 , 31, 797-808	5.3	42
15	Impact of diffuse pollution on water quality of the Vltava River (Slapy Reservoir), Czech Republic. <i>Water Science and Technology</i> , 1996 , 33, 145-152	2.2	13
14	Sources and transport of phosphorus in the vltava river basin (czech republic). <i>Water Science and Technology</i> , 1996 , 33, 137	2.2	3
13	Impact of diffuse pollution on water quality of the Vltava River (slapy reservoir), Czech Republic. Water Science and Technology, 1996 , 33, 145	2.2	4

12	Concentration of nutrients in selected lakes in the High Tatra Mountains, Slovakia: effect of season and watershed. <i>Hydrobiologia</i> , 1996 , 319, 47-55	2.4	7
11	Semi-micro determination of total phosphorus in soils, sediments, and organic materials: A simplified perchloric acid digestion procedure. <i>Communications in Soil Science and Plant Analysis</i> , 1995 , 26, 1935-1946	1.5	25
10	Chemical characteristics of lakes in the High Tatra Mountains, Slovakia. <i>Hydrobiologia</i> , 1994 , 274, 49-56	2.4	22
9	Chlorophyll-phosphorus relationship in acidified lakes of the High Tatra Mountains (Slovakia). <i>Hydrobiologia</i> , 1994 , 274, 171-177	2.4	24
8	Ammonium uptake in alpine streams in the High Tatra Mountains (Slovakia). <i>Hydrobiologia</i> , 1994 , 294, 157-165	2.4	13
7	Chemical characteristics of lakes in the High Tatra Mountains, Slovakia 1994 , 49-56		1
6	Chlorophyll-phosphorus relationship in acidified lakes of the High Tatra Mountains (Slovakia) 1994 , 171	-177	
5	Semi-Micro Determination of Total Phosphorus in Fresh Waters with Perchloric Acid Digestion. <i>International Journal of Environmental Analytical Chemistry</i> , 1993 , 53, 173-183	1.8	57
4	Semi-Micro Determination of Ammonia in Water by the Rubazoic Acid Method. <i>International Journal of Environmental Analytical Chemistry</i> , 1993 , 53, 243-248	1.8	14
3	Direct Determination of Particulate Phosphorus in Water With Perchloric Acid Digestion of Whole Membrane Filters. <i>International Journal of Environmental Analytical Chemistry</i> , 1993 , 54, 27-30	1.8	3
2	Determination of low chemical oxygen demand values in water by the dichromate semi-micro method. <i>Analyst, The</i> , 1990 , 115, 1463-1467	5	58
1	Chemical composition of atmospheric precipitation in Czechoslovakia, 1978¶984¶. Event samples. Atmospheric Environment. 1988 , 22, 1901-1908		5