Naveen Kumar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4506570/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Optimization of long-term storage stability of Kusum biodiesel using herbal anti-oxidant. Biomass Conversion and Biorefinery, 2024, 14, 1959-1973.	2.9	4
2	Experimental investigation to analyze the effect of induction length of diesel-acetylene dual fuel engine. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2023, 45, 2606-2620.	1.2	7
3	Experimental studies to evaluate the combustion, performance and emission characteristics of acetylene fuelled CI engine. International Journal of Ambient Energy, 2022, 43, 1546-1555.	1.4	4
4	Higher Alcohols as Diesel Engine Fuel. Green Energy and Technology, 2022, , 157-174.	0.4	1
5	Study of combustion, performance and emissions characteristics of oxygenated constituents and methanol fumigation in the inlet manifold of a diesel engine. Sustainable Energy Technologies and Assessments, 2022, 49, 101748.	1.7	0
6	Comparative analysis of ternary blends of renewable Diesel, diesel and ethanol with diesel. Sustainable Energy Technologies and Assessments, 2022, 50, 101828.	1.7	6
7	Effect of synthetic and aromatic amine antioxidants on oxidation stability, performance, and emission analysis of waste cooking oil biodiesel. Environmental Science and Pollution Research, 2022, 29, 27939-27953.	2.7	9
8	Comparative analysis of renewable diesel and biodiesel produced from Jatropha oil. Environmental Progress and Sustainable Energy, 2022, 41, .	1.3	2
9	Experimental Investigation on the Effectiveness of Biodiesel Based Sulfur as an Additive in Ultra Low Sulfur Diesel on the Unmodified Engine. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2022, 44, 2697-2714.	1.2	4
10	An experimental investigation on spray, performance and emission of hydrotreated waste cooking oil blends in an agricultural engine. International Journal of Engine Research, 2021, 22, 2305-2317.	1.4	14
11	Process optimization for production of biodiesel from orange peel oil using response surface methodology. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2021, 43, 727-737.	1.2	13
12	Effect of CuO nanoparticles concentration on the performance and emission characteristics of the diesel engine running on jojoba (Simmondsia Chinensis) biodiesel. Fuel, 2021, 286, 119358.	3.4	66
13	Waste glycerol derived bioâ€propanol as a potential extender fuel for compressed ignition engine. Environmental Progress and Sustainable Energy, 2021, 40, e13526.	1.3	5
14	A review on the production and physicochemical properties of renewable diesel and its comparison with biodiesel. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2021, 43, 2235-2255.	1.2	17
15	Comparison of fuel characteristics of hydrotreated waste cooking oil with its biodiesel and fossil diesel. Environmental Science and Pollution Research, 2021, 28, 11824-11834.	2.7	20
16	Effect of electrostatic precipitator on exhaust emissions in biodiesel fuelled CI engine. Environmental Science and Pollution Research, 2021, 28, 11850-11859.	2.7	5
17	Emission Characteristics of Renewable Diesel and Its Comparison with the Diesel Fuel on Single-Cylinder Diesel Engine. Lecture Notes in Mechanical Engineering, 2021, , 597-605.	0.3	0
18	Biodiesel yield and properties optimization from Kusum oil by RSM. Fuel, 2021, 291, 120218.	3.4	37

NAVEEN KUMAR

#	Article	IF	CITATIONS
19	Supercritical transesterification route for biodiesel production: Effect of parameters on yield and future perspectives. Environmental Progress and Sustainable Energy, 2021, 40, e13685.	1.3	16
20	Designing, modeling, and structural analysis of a newly designed double lobe camshaft for a two-stroke compressed air engine. Materials Today: Proceedings, 2021, 47, 3392-3392.	0.9	3
21	Methanol-Based Economy: A Way Forward to Hydrogen. Green Energy and Technology, 2021, , 563-585.	0.4	1
22	Optimization of spark-ignition engine characteristics fuelled with oxygenated bio-additive (triacetin) using response surface methodology. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2021, 235, 841-856.	1.4	7
23	Influence of nanoadditives on the performance and emission characteristics of a CI engine fuelled with diesel, biodiesel, and blends – a review. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2020, 42, 2944-2961.	1.2	44
24	Performance analysis of PTC field based ejector organic Rankine cycle integrated with a triple pressure level vapor absorption system (EORTPAS). Engineering Science and Technology, an International Journal, 2020, 23, 82-91.	2.0	5
25	Performance and emission studies of ternary fuel blends of diesel, biodiesel and octanol. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2020, 42, 2277-2296.	1.2	19
26	Next-Generation Biofuels—Opportunities and Challenges. Green Energy and Technology, 2020, , 171-191.	0.4	15
27	Effect of multi-walled carbon nanotubes and alumina nano-additives in a light duty diesel engine fuelled with schleichera oleosa biodiesel blends. Sustainable Energy Technologies and Assessments, 2020, 42, 100833.	1.7	25
28	Performance and emission characteristics of twin cylinder diesel engine fueled with mahua biodiesel and DEE. Transportation Engineering, 2020, 2, 100024.	2.3	23
29	Thermal Cracking of Karanja de-oiled seed cake on Pyrolysis Reactor for producing Bio-oil with focus on its application in diesel Engine. IOP Conference Series: Materials Science and Engineering, 2020, 804, 012014.	0.3	2
30	Characterization of pine and Eucalyptus oil and correlative evaluation of their performance as diesel blend in conventional diesel engine. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2020, , 1-15.	1.2	1
31	Potentials of waste plastic pyrolysis oil as an extender fuel for diesel engine. Arabian Journal of Geosciences, 2020, 13, 1.	0.6	10
32	Modification of 4-Stroke S.I. Engine to a Compressed Air Engine for a Light Utility Vehicle. IOP Conference Series: Materials Science and Engineering, 2020, 804, 012006.	0.3	2
33	Sal biodiesel production using Indian abundant forest feedstock. Fuel, 2020, 273, 117781.	3.4	22
34	Optimization of the Process Parameters for Hydrotreating Used Cooking Oil by the Taguchi Method and Fuzzy Logic. Journal of Energy Resources Technology, Transactions of the ASME, 2020, 142, .	1.4	6
35	Performance and Emission Characteristics of Ternary Fuel Blends in Diesel Engines. Journal of Physics: Conference Series, 2019, 1240, 012095.	0.3	0
36	Performance Analysis of Diesel Cycle under Efficient Power Density Condition with Variable Specific Heat of Working Fluid. Journal of Non-Equilibrium Thermodynamics, 2019, 44, 405-416.	2.4	18

IF # ARTICLE CITATIONS The utilization of n-butanol/diesel blends in Acetylene Dual Fuel Engine. Energy Reports, 2019, 5, 1030-1040. Role of Co-Solvent in the Super Critical Esterification process of Bio-Diesel Production through 38 0.3 1 Karanja oil. Journal of Physics: Conference Series, 2019, 1240, 012159. Influence of nanoadditives on ignition characteristics of <scp>Kusum</scp> (<scp> <i>Schleichera) Tj ETQq1 1 0.784314 rgBT /Over Studies on the use of orange peel oil and ethanol in an unmodified agricultural diesel engine. Energy 40 1.2 6 Sources, Part A: Recovery, Utilization and Environmental Effects, 2019, 41, 1817-1827. Hydroprocessed vegetable oil as a fuel for transportation sector: AÂreview. Journal of the Energy 2.7 Institute, 2019, 92, 1-17. Study of ignition delay period of n-Butanol blends with JOME and diesel under static loading 42 1.2 5 conditions. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2018, 40, 1729-1736. Some Studies on use of ternary blends of diesel, biodiesel and n-octanol. Energy Sources, Part A: 1.2 Recovery, Utilization and Environmental Effects, 2018, 40, 1721-1728. Performance emission and combustion studies of diesel engine on Jatropha ethyl ester and its higher 0.2 44 4 alcohol blends. International Journal of Global Warming, 2018, 14, 159. Experimental studies on the use of methyl and ethyl esters as an extender in a small capacity diesel 1.4 engine. Biofuels, 2016, 7, 637-646. Effects of n-Butanol Blending with Jatropha Methyl Esters on Compression Ignition Engine. Arabian 46 1.1 17 Journal for Science and Engineering, 2016, 41, 4327-4336. Experimental investigation of Jatropha oil methyl ester (JOME) as pilot fuel with CNG in a dual fuel 1.4 engine. Biofuels, 2016, 7, 511-520. Comparative assessment of sal and kusum biodiesel properties. Energy Sources, Part A: Recovery, 48 1.2 16 Utilization and Environmental Effects, 2016, 38, 3391-3396. Effect of ethanol addition on the properties of Jatropha ethyl ester. Energy Sources, Part A: Recovery, 1.2 Utilization and Environmental Effects, 2016, 38, 3464-3469. Comparative study of biodiesel from Jatropha and orange peel oils as pilot fuels in a dual-fuel engine. 50 1.2 5 Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2016, 38, 3491-3496. Single Step Biodiesel Production from Pongamia pinnata (Karanja) Seed Oil Using Deep Eutectic 1.8 24 Solvent (DESs) Catalysts. Waste and Biomass Valorization, 2016, 7, 1055-1065. Effect of EGR on performance and emission characteristics of a dual fuel engine fuelled with CNG and 52 1.4 22 JOME. Biofuels, 2016, 7, 743-751. Catalytic upgrading of waste tire pyrolysis oil via supercritical esterification with deep eutectic solvents (green solvents and Âcatalysts). Journal of the Energy Institute, 2016, 89, 683-693. Combustion, performance and emissions of <i>Shorea robusta</i> methyl ester blends in a diesel 54 1.4 27

NAVEEN KUMAR

engine. Biofuels, 2016, 7, 447-456.

NAVEEN KUMAR

#	Article	IF	CITATIONS
55	Hydrothermal liquefaction of de-oiled Jatropha curcas cake using Deep Eutectic Solvents (DESs) as catalysts and co-solvents. Bioresource Technology, 2016, 199, 375-381.	4.8	64
56	Blending of Higher Alcohols with Vegetable Oil Based Fuels for Use in Compression Ignition Engine. , 2015, , .		8
57	Comparative study of performance and emission characteristics of Jatropha alkyl ester/butanol/diesel blends in a small capacity CI engine. Biofuels, 2015, 6, 179-190.	1.4	11
58	Purification of <i>Jatropha curcas</i> based biodiesel by dry washing, using banana peel and mushroom powder as natural adsorbents. Biofuels, 2015, 6, 261-267.	1.4	15
59	First and second law analysis of solar operated combined Rankine and ejector refrigeration cycle. Applied Solar Energy (English Translation of Geliotekhnika), 2014, 50, 113-121.	0.2	7
60	Comparative Tribological Investigation of Mahua Oil and its Chemically Modified Derivatives. SAE International Journal of Fuels and Lubricants, 2014, 7, 360-365.	0.2	6
61	A study on the performance and emission of a diesel engine fueled with Karanja biodiesel and its blends. Energy, 2013, 56, 1-7.	4.5	230
62	Potential Utilization of Higher Alcohols in Unmodified Diesel Engine. , 2013, , .		2
63	Production and Physico-Chemical Characterisation of Kusum Oil Methyl Ester as an Alternative Fuel in Diesel Engine. Journal of Biofuels, 2013, 4, 38.	0.1	4
64	Compressed Air Engine: A Bridge for Sustainable Development. Asian Journal of Scientific Research, 2013, 6, 254-262.	0.3	0
65	Scope and opportunities of using glycerol as an energy source. Renewable and Sustainable Energy Reviews, 2012, 16, 4551-4556.	8.2	93
66	A study on the performance and emission of a diesel engine fueled with Jatropha biodiesel oil and its blends. Energy, 2012, 37, 616-622.	4.5	438
67	Experimental studies on fumigation of ethanol in a small capacity Diesel engine. Energy, 2011, 36, 1030-1038.	4.5	114
68	Design and Development of a Sheet Metal Plastic Backed Proton Exchange Membrane Fuel Cell. Journal of Fuel Cell Science and Technology, 2011, 8, .	0.8	1
69	Performance and emission studies on an agriculture engine on neat Jatropha oil. Journal of Mechanical Science and Technology, 2010, 24, 529-535.	0.7	57
70	Performance and emission study of preheated Jatropha oil on medium capacity diesel engine. Energy, 2010, 35, 2484-2492.	4.5	205
71	Experimental Investigation of Diesel Engine Fueled with Jatropha Oil Blend with Ethanol. SAE International Journal of Fuels and Lubricants, 0, 6, 951-958.	0.2	11
72	Physico Chemical Analysis of Linseed Oil and its Blends as a Potential Fuel for Diesel Engine. Advanced Materials Research, 0, 724-725, 405-408.	0.3	2

Naveen Kumar

#	Article	IF	CITATIONS
73	Evaluation of Performance and Emission Characteristics of an Unmodified Naturally Aspirated Compression Ignition Engine on Blends of Diethyl Ether and Diesel. , 0, , .		7
74	Experimental Investigation on Use of Jatropha Oil Ethyl Easter and Diesel Blends in Small Capacity Diesel Engine. , 0, , .		1
75	Utilization of Blends of Jatropha Oil and N-Butanol in a Naturally Aspirated Compression Ignition Engine. , 0, , .		11
76	Performance Evaluation and Emission Studies of a Single Cylinder Diesel Engine Fuelled with Isopropyl Alcohol and Diesel. , 0, , .		13
77	Experimental Investigation of Orange Peel Oil Methyl Ester on Single Cylinder Diesel Engine. , 0, , .		12
78	Comparative Assessment of Performance, Emission and Combustion Characteristics of Blends of Methyl and Ethyl Ester of Jatropha Oil and Diesel in Compression Ignition Engine. , 0, , .		10
79	Synthesis of Linseed oil Biodiesel using a Non-Catalytic Supercritical Transesterification Process. SAE International Journal of Fuels and Lubricants, 0, 7, 317-322.	0.2	2
80	Some Experimental Studies on Combustion, Emission and Performance Characteristics of an Agricultural Diesel Engine Fueled with Blends of Kusum Oil Methyl Ester and Diesel. , 0, , .		12
81	Effect of Blending of Ethanol in Kusum Oil on Performance and Emission Characteristics of a Single Cylinder Diesel Engine. , 0, , .		7
82	Performance and Emission Analysis of a CI Engine in Dual Mode with CNG and Karanja Oil Methyl Ester. , 0, , .		3
83	Performance, Emission and Combustion, Analysis of Diesel Engine Fueled with Blends of Mahua Oil Methyl Ester and Diesel. , 0, , .		7
84	Potential Utilization of the Blend of Orange Peel Oil Methyl Ester and Isopropyl Alcohol in CI Engine. , 0, , .		10
85	Assessment of the Performance and Emission Characteristics of 1-Octanol/Diesel Fuel Blends in a Water Cooled Compression Ignition Engine. , 0, , .		35
86	Comparative Study of Performance and Emission Characteristics of Fish Oil and Calophyllum Inophyllum Oil Bio-Diesel in a Light Duty Diesel Engine. , 0, , .		3
87	Tribological Properties of Automotive Lubricant SAE 20W-40 Containing Nano-Al ₂ O ₃ particles. , 0, , .		19
88	Performance and Emission Studies of Diesel Engine Fuelled with Orange Peel Oil and N-Butanol Alcohol Blends. , 0, , .		8
89	Process Optimization of Biodiesel Production from Sal Seed Oil using Response Surface Methodology [RSM] and Diesel. , 0, , .		9
90	Performance Evaluation and Emission Characteristics of Biodiesel-Alcohol-Diesel Blends Fuelled in VCR Engine. , 0, , .		0

NAVEEN KUMAR

#	Article	IF	CITATIONS
91	Development of an Intake Runner of a CI Engine for Performance Enhancement and Emission Reductions Due to Variations in Air Flow Pattern within the Runner. , 0, , .		Ο
92	Enhancement in Performance and Emission Characteristics of Diesel Engine by Adding Alloy Nanoparticle. , 0, , .		1
93	Performance Based Optimization of Intake and Injection Parameters of an Advanced Compressed Air Engine Kit. , 0, , .		3
94	Sustainable route for <i>S. Oleosa</i> biodiesel production using response surface methodology. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 0, , 1-13.	1.2	3
95	Synergistic Effect of Pine Oil and Eucalyptus Oil on the Performance of a Compression Ignition Engine. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 0, , 1-12.	1.2	1
96	Alternative Fuels for Diesel Engines: New Frontiers. , 0, , .		7
97	Improvement in performance of CI engine using various techniques with alternative fuel. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 0, , 1-27.	1.2	15
98	Performance enhancement of savonius turbine with the application of reorienting blade mechanism. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 0, , 1-18.	1.2	1
99	Experimental investigation and artificial neural network modeling of performance and emission of a CI engine using orange peel oil- diesel blends. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 0, , 1-15.	1.2	4
100	Numerical investigation of the effect of nozzle hole diameter on the combustion, emission, and spray characteristics in a diesel engine. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 0, , 1-18.	1.2	0
101	Moving ahead from hydrogen to methanol economy: scope and challenges. Clean Technologies and Environmental Policy, 0, , 1.	2.1	5
102	Utilization of Blends of Biodiesel and Higher Alcohols in a Small Capacity Diesel Engine. , 0, , .		2
103	Study of Performance and Emission Characteristics of Propan-2-ol and Gasoline Fuel Blends in an Unmodified Spark Ignition Engine. , 0, , .		3