Juozas V Grazulevicius

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4506558/publications.pdf

Version: 2024-02-01

174 papers 3,979 citations

36 h-index

101496

50 g-index

176 all docs

176 docs citations

176 times ranked

3677 citing authors

#	Article	lF	CITATIONS
1	Deep-Blue High-Efficiency TTA OLED Using <i>Para</i> - and <i>Meta</i> - Conjugated Cyanotriphenylbenzene and Carbazole Derivatives as Emitter and Host. Journal of Physical Chemistry Letters, 2017, 8, 6199-6205.	2.1	125
2	An Ambipolar BODIPY Derivative for a White Exciplex OLED and Cholesteric Liquid Crystal Laser toward Multifunctional Devices. ACS Applied Materials & Samp; Interfaces, 2017, 9, 4750-4757.	4.0	116
3	High hole mobilities in carbazole-based glass-forming hydrazones. Journal of Materials Chemistry, 2002, 12, 3469-3474.	6.7	87
4	Mixing of Phosphorescent and Exciplex Emission in Efficient Organic Electroluminescent Devices. ACS Applied Materials & Interfaces, 2015, 7, 1219-1225.	4.0	78
5	Multicolor Luminescence Switching and Controllable Thermally Activated Delayed Fluorescence Turn on/Turn off in Carbazole–Quinoxaline–Carbazole Triads. Journal of Physical Chemistry Letters, 2018, 9, 1172-1177.	2.1	77
6	Impact of Linking Topology on the Properties of Carbazole Trimers and Dimers. Journal of Physical Chemistry C, $2011,115,4887$ - 4897 .	1.5	74
7	A single emitting layer white OLED based on exciplex interface emission. Journal of Materials Chemistry C, 2016, 4, 3851-3856.	2.7	74
8	Structure Properties Relationship of Donor–Acceptor Derivatives of Triphenylamine and 1,8-Naphthalimide. Journal of Physical Chemistry C, 2012, 116, 14811-14819.	1.5	66
9	Highly Efficient Blue Organic Light-Emitting Diodes Based on Intermolecular Triplet–Singlet Energy Transfer. Journal of Physical Chemistry C, 2013, 117, 22538-22544.	1.5	65
10	Contribution of TADF and exciplex emission for efficient "warm-white―OLEDs. Journal of Materials Chemistry C, 2018, 6, 1543-1550.	2.7	64
11	Impact of intramolecular twisting and exciton migration on emission efficiency of multifunctional fluorene-benzothiadiazole-carbazole compounds. Journal of Chemical Physics, 2011, 134, 204508.	1.2	53
12	Structure–property relationships of star-shaped blue-emitting charge-transporting 1,3,5-triphenylbenzene derivatives. Dyes and Pigments, 2015, 117, 122-132.	2.0	53
13	Impact of Donor Substitution Pattern on the TADF Properties in the Carbazolyl-Substituted Triazine Derivatives. Journal of Physical Chemistry C, 2017, 121, 23618-23625.	1.5	52
14	Aggregationâ€Enhanced Emission and Thermally Activated Delayed Fluorescence of Derivatives of 9â€Phenylâ€9 <i>H</i> à€Carbazole: Effects of Methoxy and <i>tert</i> à€Butyl Substituents. Chemistry - A European Journal, 2018, 24, 9581-9591.	1.7	52
15	Can hydrogen bonds improve the hole-mobility in amorphous organic semiconductors? Experimental and theoretical insights. Journal of Materials Chemistry C, 2015, 3, 11660-11674.	2.7	51
16	Polymorphism of derivatives of <i>tert</i> -butyl substituted acridan and perfluorobiphenyl as sky-blue OLED emitters exhibiting aggregation induced thermally activated delayed fluorescence. Journal of Materials Chemistry C, 2018, 6, 13179-13189.	2.7	51
17	Pyrenyl-Functionalized Fluorene and Carbazole Derivatives as Blue Light Emitters. Journal of Physical Chemistry C, 2012, 116, 7561-7572.	1.5	49
18	Sky-blue aggregation-induced emission molecules for non-doped organic light-emitting diodes. Journal of Materials Chemistry C, 2017, 5, 6054-6060.	2.7	49

#	Article	IF	Citations
19	Structure–property relationship of blue solid state emissive phenanthroimidazole derivatives. Physical Chemistry Chemical Physics, 2017, 19, 16737-16748.	1.3	49
20	Aggregation, thermal annealing, and hosting effects on performances of an acridan-based TADF emitter. Organic Electronics, 2018, 63, 29-40.	1.4	49
21	Influence of the hole blocking layer on blue phosphorescent organic light-emitting devices using 3,6-di(9-carbazolyl)-9-(2-ethylhexyl)carbazole as host material. Applied Physics Letters, 2010, 96, .	1.5	48
22	Effect of Ethynyl Linkages on the Properties of the Derivatives of Triphenylamine and 1,8-Naphthalimide. Journal of Physical Chemistry C, 2015, 119, 28335-28346.	1.5	48
23	Suppression of benzophenone-induced triplet quenching for enhanced TADF performance. Journal of Materials Chemistry C, 2019, 7, 11522-11531.	2.7	48
24	Highly efficient blue organic light-emitting diode with an oligomeric host having high triplet-energy and high electron mobility. Journal of Materials Chemistry, 2011, 21, 9546.	6.7	46
25	Spectroelectrochemical characterization of conducting polymers from star-shaped carbazole-triphenylamine compounds. Electrochimica Acta, 2015, 154, 119-127.	2.6	46
26	Bipolar highly solid-state luminescent phenanthroimidazole derivatives as materials for blue and white organic light emitting diodes exploiting either monomer, exciplex or electroplex emission. Dyes and Pigments, 2017, 146, 425-437.	2.0	46
27	Highly Luminous Sky-Blue Organic Light-Emitting Diodes Based on the Bis[(1,2)(5,6)]indoloanthracene Emissive Layer. Journal of Physical Chemistry C, 2016, 120, 6206-6217.	1.5	45
28	Star-Shaped Carbazole Derivatives for Bilayer White Organic Light-Emitting Diodes Combining Emission from Both Excitons and Exciplexes. Journal of Physical Chemistry C, 2012, 116, 20769-20778.	1.5	44
29	OLEDs based on the emission of interface and bulk exciplexes formed by cyano-substituted carbazole derivative. Dyes and Pigments, 2017, 139, 795-807.	2.0	44
30	A wet- and dry-process feasible carbazole type host for highly efficient phosphorescent OLEDs. Journal of Materials Chemistry C, 2015, 3, 12297-12307.	2.7	43
31	Solution-processable naphthalene and phenyl substituted carbazole core based hole transporting materials for efficient organic light-emitting diodes. Journal of Materials Chemistry C, 2017, 5, 9854-9864.	2.7	43
32	Revealing resonance effects and intramolecular dipole interactions in the positional isomers of benzonitrile-core thermally activated delayed fluorescence materials. Journal of Materials Chemistry C, 2019, 7, 9184-9194.	2.7	42
33	Easy accessible blue luminescent carbazole-based materials for organic light-emitting diodes. Dyes and Pigments, 2017, 137, 24-35.	2.0	41
34	An iminodibenzyl–quinoxaline–iminodibenzyl scaffold as a mechanochromic and dual emitter: donor and bridge effects on optical properties. Chemical Communications, 2018, 54, 13857-13860.	2.2	39
35	Arylfluorenyl-substituted metoxytriphenylamines as deep blue exciplex forming bipolar semiconductors for white and blue organic light emitting diodes. Dyes and Pigments, 2017, 140, 187-202.	2.0	38
36	<i>N</i> , <i>O π</i> -Conjugated 4-Substituted 1,3-Thiazole BF ₂ Complexes: Synthesis and Photophysical Properties. Journal of Organic Chemistry, 2018, 83, 1095-1105.	1.7	38

#	Article	IF	Citations
37	Synthesis and Photophysical Properties of Glass-Forming Bay-Substituted Perylenediimide Derivatives. Journal of Physical Chemistry B, 2010, 114, 1782-1789.	1.2	37
38	White hyperelectrofluorescence from solution-processable OLEDs based on phenothiazine substituted tetraphenylethylene derivatives. Journal of Materials Chemistry C, 2020, 8, 13375-13388.	2.7	37
39	Glass forming donor-substituted s-triazines: Photophysical and electrochemical properties. Dyes and Pigments, 2013, 97, 412-422.	2.0	36
40	Multifunctional red phosphorescent bis-cyclometallated iridium complexes based on 2-phenyl-1,2,3-benzotriazole ligand and carbazolyl moieties. Tetrahedron, 2011, 67, 1852-1861.	1.0	35
41	Synthesis and characterisation of a carbazole-based bipolar exciplex-forming compound for efficient and color-tunable OLEDs. New Journal of Chemistry, 2017, 41, 559-568.	1.4	34
42	Biomimetic Approach to Inhibition of Photooxidation in Organic Solar Cells Using Beta-Carotene as an Additive. ACS Applied Materials & Samp; Interfaces, 2019, 11, 41570-41579.	4.0	34
43	Effect of Methoxy Substituents on the Properties of the Derivatives of Carbazole and Diphenylamine. Journal of Physical Chemistry C, 2011, 115, 4856-4862.	1.5	33
44	New derivatives of triphenylamine and naphthalimide as ambipolar organic semiconductors: Experimental and theoretical approach. Dyes and Pigments, 2014, 106, 58-70.	2.0	33
45	Nine-ring angular fused biscarbazoloanthracene displaying a solid state based excimer emission suitable for OLED application. Journal of Materials Chemistry C, 2016, 4, 5795-5805.	2.7	33
46	Optically and electrically excited intermediate electronic states in donor:acceptor based OLEDs. Materials Horizons, 2020, 7, 1126-1137.	6.4	33
47	Structure–properties relationship of carbazole and fluorene hybrid trimers: experimental and theoretical approaches. Physical Chemistry Chemical Physics, 2014, 16, 13932.	1.3	32
48	Dual Interface Exciplex Emission of Quinoline and Carbazole Derivatives for Simplified Nondoped White OLEDs. Journal of Physical Chemistry C, 2019, 123, 2386-2397.	1.5	32
49	Dual emission fluorescence/room-temperature phosphorescence of phenothiazine and benzotrifluoride derivatives and its application for optical sensing of oxygen. Sensors and Actuators B: Chemical, 2020, 321, 128533.	4.0	32
50	Influence of methoxy groups on the properties of 1,1-bis(4-aminophenyl)cyclohexane based arylamines: experimental and theoretical approach. Journal of Materials Chemistry, 2012, 22, 3015.	6.7	31
51	Can Fluorenone-Based Compounds Emit in the Blue Region? Impact of the Conjugation Length and the Ground-State Aggregation. Chemistry of Materials, 2017, 29, 1695-1707.	3.2	31
52	Observation of Dual Room Temperature Fluorescence–Phosphorescence in Air, in the Crystal Form of a Thianthrene Derivative. Journal of Physical Chemistry C, 2018, 122, 24958-24966.	1.5	31
53	Multifunctional asymmetric D-A-D' compounds: Mechanochromic luminescence, thermally activated delayed fluorescence and aggregation enhanced emission. Chemical Engineering Journal, 2020, 401, 125962.	6.6	31
54	Twisted Intramolecular Charge Transfer States in Trinary Star-Shaped Triphenylamine-Based Compounds. Journal of Physical Chemistry A, 2018, 122, 3218-3226.	1.1	29

#	Article	IF	Citations
55	Pyrenyl substituted 1,8-naphthalimide as a new material for weak efficiency-roll-off red OLEDs: a theoretical and experimental study. New Journal of Chemistry, 2018, 42, 12492-12502.	1.4	29
56	Effect of donor substituents on thermally activated delayed fluorescence of diphenylsulfone derivatives. Journal of Luminescence, 2019, 206, 250-259.	1.5	29
57	Through-space charge transfer in luminophore based on phenyl-linked carbazole- and phthalimide moieties utilized in cyan-emitting OLEDs. Dyes and Pigments, 2020, 172, 107833.	2.0	29
58	New WOLEDs based on π-extended azatrioxa[8]circulenes. Journal of Materials Chemistry C, 2017, 5, 4123-4128.	2.7	28
59	Interfacial and bulk properties of hole transporting materials in perovskite solar cells: spiro-MeTAD <i>versus</i> spiro-MeTAD. Journal of Materials Chemistry A, 2020, 8, 8527-8539.	5.2	28
60	Exciplex-Enhanced Singlet Emission Efficiency of Nondoped Organic Light Emitting Diodes Based on Derivatives of Tetrafluorophenylcarbazole and Tri/Tetraphenylethylene Exhibiting Aggregation-Induced Emission Enhancement. Journal of Physical Chemistry C, 2018, 122, 14827-14837.	1.5	27
61	Thianthrene and acridan-substituted benzophenone or diphenylsulfone: Effect of triplet harvesting via TADF and phosphorescence on efficiency of all-organic OLEDS. Organic Electronics, 2019, 70, 227-239.	1.4	26
62	High-triplet-level phthalimide based acceptors for exciplexes with multicolor emission. Dyes and Pigments, 2019, 162, 872-882.	2.0	26
63	W-shaped bipolar derivatives of carbazole and oxadiazole with high triplet energies for electroluminescent devices. Dyes and Pigments, 2018, 149, 812-821.	2.0	25
64	Stable Allâ€Organic Radicals with Ambipolar Charge Transport. Chemistry - A European Journal, 2016, 22, 18551-18558.	1.7	24
65	Sensitivity of Redox and Optical Properties of Electroactive Carbazole Derivatives to the Molecular Architecture and Methoxy Substitutions. Journal of Physical Chemistry C, 2018, 122, 10138-10152.	1.5	24
66	Diverse Regimes of Mode Intensity Correlation in Nanofiber Random Lasers through Nanoparticle Doping. ACS Photonics, 2018, 5, 1026-1033.	3.2	24
67	Dual nature of exciplexes: exciplex-forming properties of carbazole and fluorene hybrid trimers. Journal of Materials Chemistry C, 2019, 7, 25-32.	2.7	24
68	Strategy Toward Tuning Emission of Star-Shaped Tetraphenylethene-Substituted Truxenes for Sky-Blue and Greenish-White Organic Light-Emitting Diodes. Journal of Physical Chemistry C, 2018, 122, 15614-15624.	1.5	23
69	Synthesis and Performance in OLEDs of Selenium-Containing Phosphorescent Emitters with Red Emission Color Deeper Than the Corresponding NTSC Standard. Inorganic Chemistry, 2019, 58, 10174-10183.	1.9	22
70	Oxygen sensing properties of thianthrene and phenothiazine derivatives exhibiting room temperature phosphorescence: Effect of substitution of phenothiazine moieties. Sensors and Actuators B: Chemical, 2021, 345, 130369.	4.0	22
71	N-annelated perylenes as effective green emitters for OLEDs. RSC Advances, 2015, 5, 78150-78159.	1.7	21
72	Benzo[4,5]thiazolo[3,2- <i>c</i>][1,3,5,2]oxadiazaborinines: Synthesis, Structural, and Photophysical Properties. Journal of Organic Chemistry, 2018, 83, 12129-12142.	1.7	21

#	Article	IF	Citations
73	Wet-process feasible novel carbazole-type molecular host for high efficiency phosphorescent organic light emitting diodes. Journal of Materials Chemistry C, 2014, 2, 8707-8714.	2.7	20
74	Synthesis and properties of the derivatives of triphenylamine and 1,8-naphthalimide with the olefinic linkages between chromophores. RSC Advances, 2016, 6, 2191-2201.	1.7	20
75	Tuning the ambipolar charge transport properties of tricyanovinyl-substituted carbazole-based materials. Physical Chemistry Chemical Physics, 2017, 19, 6721-6730.	1.3	20
76	Methoxy- and tert-butyl-substituted meta-bis(N-carbazolyl)phenylenes as hosts for organic light-emitting diodes. Organic Electronics, 2019, 73, 317-326.	1.4	20
77	TADF versus TTA emission mechanisms in acridan and carbazole-substituted dibenzo[a,c]phenazines: Towards triplet harvesting emitters and hosts. Chemical Engineering Journal, 2021, 417, 127902.	6.6	20
78	Carbazole based polymers as hosts for blue iridium emitters: synthesis, photophysics and high efficiency PLEDs. Journal of Materials Chemistry C, 2013, 1, 8209.	2.7	19
79	Bipolar thianthrene derivatives exhibiting room temperature phosphorescence for oxygen sensing. Dyes and Pigments, 2019, 170, 107605.	2.0	19
80	Benzoselenophenylpyridine platinum complexes: green <i>versus</i> red phosphorescence towards hybrid OLEDs. Dalton Transactions, 2020, 49, 3393-3397.	1.6	19
81	Exciplex-forming systems with extremely high RISC rates exceeding 107 sâ^'1 for oxygen probing and white hybrid OLEDs. Journal of Materials Research and Technology, 2021, 10, 711-721.	2.6	19
82	Carbazolyl-substituted quinazolinones as high-triplet-energy materials for phosphorescent organic light emitting diodes. Dyes and Pigments, 2017, 142, 394-405.	2.0	18
83	Nanoparticle-doped electrospun fiber random lasers with spatially extended light modes. Optics Express, 2017, 25, 24604.	1.7	18
84	Reversibly Switchable Phaseâ€Dependent Emission of Quinoline and Phenothiazine Derivatives towards Applications in Optical Sensing and Information Multicoding. Chemistry - A European Journal, 2021, 27, 2826-2836.	1.7	18
85	All-organic fast intersystem crossing assisted exciplexes exhibiting sub-microsecond thermally activated delayed fluorescence. Journal of Materials Chemistry C, 2021, 9, 4532-4543.	2.7	18
86	Structure–property relationship of isomeric diphenylethenyl-disubstituted dimethoxycarbazoles. RSC Advances, 2015, 5, 49577-49589.	1.7	17
87	Derivatives of indandione and differently substituted triphenylamine with charge-transporting and NLO properties. Dyes and Pigments, 2015, 113, 38-46.	2.0	17
88	Effect of the Nature of the Core on the Properties of the Star-Shaped Compounds Containing Bicarbazolyl Moieties. Journal of Physical Chemistry C, 2016, 120, 1208-1217.	1.5	17
89	Exciplex energy transfer through spacer: White electroluminescence with enhanced stability based on cyan intermolecular and orange intramolecular thermally activated delayed fluorescence. Journal of Advanced Research, 2020, 24, 379-389.	4.4	17
90	Diastereoselective Strategies towards Thia $\{\langle i\rangle n\langle i\rangle\}$ helicenes. Chemistry - A European Journal, 2015, 21, 18791-18798.	1.7	16

#	Article	IF	CITATIONS
91	Derivative of oxygafluorene and di-tert-butyl carbazole as the host with very high hole mobility for high-efficiency blue phosphorescent organic light-emitting diodes. Dyes and Pigments, 2016, 130, 298-305.	2.0	16
92	Aggregation-induced emission tetraphenylethene type derivatives for blue tandem organic light-emitting diodes. Organic Electronics, 2019, 67, 279-286.	1.4	16
93	Carbazole derivatives containing one or two tetra-/triphenylethenyl units as efficient hole-transporting OLED emitters. Dyes and Pigments, 2019, 168, 93-102.	2.0	16
94	Synthesis of Linear and Vâ€Shaped Carbazolylâ€Substituted Pyridineâ€3,5â€dicarbonitriles Exhibiting Efficient Bipolar Charge Transport and Eâ€Type Fluorescence. Chemistry - A European Journal, 2019, 25, 3325-3336.	1.7	16
95	Comparative study of multi-functional luminogens with 1,3,5-triazine as the core and phenothiazine or phenoxy donors as the peripheral moieties for non-doped/doped fluorescent and red phosphorescent OLEDs. Dyes and Pigments, 2020, 173, 107793.	2.0	16
96	Bipolar 1,8-naphthalimides showing high electron mobility and red AIE-active TADF for OLED applications. Physical Chemistry Chemical Physics, 2022, 24, 5070-5082.	1.3	16
97	Differently linked fluorene-carbazole triads for light amplification. Dyes and Pigments, 2015, 123, 370-379.	2.0	15
98	Differently substituted benzonitriles for non-doped OLEDs. Dyes and Pigments, 2020, 172, 107789.	2.0	15
99	Donor and acceptor substituted triphenylamines exhibiting bipolar charge-transporting and NLO properties. Dyes and Pigments, 2017, 140, 431-440.	2.0	14
100	Derivatives of carbazole and chloropyridine exhibiting aggregation induced emission enhancement and deep-blue delayed fluorescence. Dyes and Pigments, 2018, 149, 588-596.	2.0	14
101	Application of the Suzuki–Miyaura Reaction for the Postfunctionalization of the Benzo[4,5]thiazolo[3,2- <i>>c< i>][1,3,5,2]oxadiazaborinine Core: An Approach toward Fluorescent Dyes. Journal of Organic Chemistry, 2019, 84, 5614-5626.</i>	1.7	14
102	Differently substituted benzothiadiazoles as charge-transporting emitters for fluorescent organic light-emitting diodes. Dyes and Pigments, 2019, 166, 217-225.	2.0	14
103	An approach to discovering novel exciplex supramolecular complex based on carbazole-containing 1,8-naphthalimide. Dyes and Pigments, 2018, 149, 298-305.	2.0	13
104	Methoxycarbazolyl-disubstituted dibenzofuranes as holes- and electrons-transporting hosts for phosphorescent and TADF-based OLEDs. Dyes and Pigments, 2020, 172, 107781.	2.0	13
105	Bistriazoles with a Biphenyl Core Derivative as an Electron-Favorable Bipolar Host of Efficient Blue Phosphorescent Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2020, 12, 49895-49904.	4.0	13
106	Organolithium-Mediated Postfunctionalization of Thiazolo[3,2- <i>c</i> [1,3,5,2]oxadiazaborinine Fluorescent Dyes. Journal of Organic Chemistry, 2020, 85, 6060-6072.	1.7	13
107	Exciplex-Forming Systems of Physically Mixed and Covalently Bonded Benzoyl-1 <i>H</i> -1,2,3-Triazole and Carbazole Moieties for Solution-Processed White OLEDs. Journal of Organic Chemistry, 2022, 87, 4040-4050.	1.7	13
108	Multifunctional derivatives of pyrimidine-5-carbonitrile and differently substituted carbazoles for doping-free sky-blue OLEDs and luminescent sensors of oxygen. Journal of Advanced Research, 2021, 33, 41-51.	4.4	12

#	Article	IF	CITATIONS
109	Direct Observation of Spin States Involved in Organic Electroluminescence Based on Thermally Activated Delayed Fluorescence. Advanced Optical Materials, 2017, 5, 1600926.	3.6	11
110	Diphenylsulfone-based hosts for electroluminescent devices: Effect of donor substituents. Dyes and Pigments, 2020, 175, 108104.	2.0	11
111	Tuning of spin-flip efficiency of blue emitting multicarbazolyl-substituted benzonitriles by exploitation of the different additional electron accepting moieties. Chemical Engineering Journal, 2021, 423, 130236.	6.6	11
112	Not the sum of their parts: understanding multi-donor interactions in symmetric and asymmetric TADF emitters. Journal of Materials Chemistry C, 2022, 10, 4737-4747.	2.7	11
113	Phenylvinyl-Substituted Carbazole Twin Compounds as Efficient Materials for the Charge-Transporting Layers of OLED Devices. Journal of Electronic Materials, 2015, 44, 4006-4011.	1.0	10
114	High-triplet-energy carbazole and fluorene tetrads. Journal of Luminescence, 2016, 169, 256-265.	1.5	10
115	Derivatives of 2-phenylindole and carbazole as host materials for phosphorescent organic light emitting diodes. Dyes and Pigments, 2017, 137, 58-68.	2.0	10
116	Blue <i>versus</i> yellow emission in bipolar fluorenone derivatives: the impact of aggregation and hydrogen bonding. Journal of Materials Chemistry C, 2018, 6, 1679-1692.	2.7	10
117	Facile structure-modification of xanthenone based OLED emitters exhibiting both aggregation induced emission enhancement and thermally activated delayed fluorescence. Journal of Luminescence, 2020, 220, 116955.	1.5	9
118	Light-Sensitive Material Structure–Electrical Performance Relationship for Optical Memory Transistors Incorporating Photochromic Dihetarylethenes. ACS Applied Materials & Samp; Interfaces, 2020, 12, 32987-32993.	4.0	9
119	1,4-Bis(trifluoromethyl)benzene as a new acceptor for the design and synthesis of emitters exhibiting efficient thermally activated delayed fluorescence and electroluminescence: experimental and computational guidance. Journal of Materials Chemistry C, 2022, 10, 4929-4940.	2.7	9
120	Dual <i>versus</i> normal TADF of pyridines ornamented with multiple donor moieties and their performance in OLEDs. Journal of Materials Chemistry C, 2021, 9, 3928-3938.	2.7	8
121	Interfacial <i>versus</i> Bulk Properties of Hole-Transporting Materials for Perovskite Solar Cells: Isomeric Triphenylamine-Based Enamines <i>versus</i> Spiro-OMeTAD. ACS Applied Materials & amp; Interfaces, 2021, 13, 21320-21330.	4.0	8
122	Multifunctional derivatives of donor-substituted perfluorobiphenyl for OLEDs and optical oxygen sensors. Dyes and Pigments, 2021, 193, 109493.	2.0	8
123	Hole-transporting thiophene-based hydrazones with reactive vinyl groups. Synthetic Metals, 2014, 197, 1-7.	2.1	7
124	3,3′-Bicarbazole-based compounds as bipolar hosts for green and red phosphorescent organic light-emitting devices. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2020, 261, 114662.	1.7	7
125	Oxygen sensing and OLED applications of di- <i>tert</i> -butyl-dimethylacridinyl disubstituted oxygafluorene exhibiting long-lived deep-blue delayed fluorescence. Journal of Materials Chemistry C, 2020, 8, 9632-9638.	2.7	7
126	Towards Blue AIE/AIEE: Synthesis and Applications in OLEDs of Tetra-/Triphenylethenyl Substituted 9,9-Dimethylacridine Derivatives. Molecules, 2020, 25, 445.	1.7	7

#	Article	IF	Citations
127	Spin―and Voltageâ€Dependent Emission from Intra―and Intermolecular TADF OLEDs. Advanced Electronic Materials, 2021, 7, 2000702.	2.6	7
128	Does Throughâ€Space Charge Transfer in Bipolar Hosts Affect the Efficiency of Blue OLEDs?. Advanced Optical Materials, 2021, 9, 2002227.	3.6	7
129	Polymorph acceptor-based triads with photoinduced TADF for UV sensing. Chemical Engineering Journal, 2021, 425, 131549.	6.6	7
130	Synthesis and Properties of Triindole-Based Monomers and Polymers. Molecular Crystals and Liquid Crystals, 2014, 590, 121-129.	0.4	6
131	Polymers Containing Diphenylvinyl-Substituted Indole Rings as Charge-Transporting Materials for OLEDs. Journal of Electronic Materials, 2016, 45, 1210-1215.	1.0	6
132	Can attachment of tert-butyl substituents to methoxycarbazole moiety induce efficient TADF in diphenylsulfone-based blue OLED emitters?. Organic Electronics, 2020, 86, 105894.	1.4	6
133	Effect of methoxy-substitutions on the hole transport properties of carbazole-based compounds: pros and cons. Journal of Materials Chemistry C, 2021, 9, 9941-9951.	2.7	6
134	Carbazole-modified thiazolo $[3,2-\langle i\rangle c\langle i\rangle][1,3,5,2]$ oxadiazaborinines exhibiting aggregation-induced emission and mechanofluorochromism. Organic and Biomolecular Chemistry, 2021, 19, 406-415.	1.5	6
135	New Electron Transport Materials for High Performance Organic Solar Cells: Synthesis and Properties of Symmetrical and Asymmetrical 1,4,5,8â€Naphthalenetetracarboxylic Dianhydride Derivatives. Advanced Electronic Materials, 2016, 2, 1600047.	2.6	5
136	Human-eyes-friendly white electroluminescence from solution-processable hybrid OLEDs exploiting new iridium (III) complex containing benzoimidazophenanthridine ligand. Dyes and Pigments, 2020, 174, 108068.	2.0	5
137	An experimental and theoretical study of exciplex-forming compounds containing trifluorobiphenyl and 3,6-di- <i>tert</i> -butylcarbazole units and their performance in OLEDs. Journal of Materials Chemistry C, 2020, 8, 14186-14195.	2.7	5
138	High triplet energy materials for efficient exciplex-based and full-TADF-based white OLEDs. Dyes and Pigments, 2020, 177, 108259.	2.0	5
139	Aggregationâ€Induced Emissionâ€Active Carbazolylâ€Modified Benzo[4,5]thiazolo[3,2â€ <i>c</i>)oxadiazaborinines as Mechanochromic Fluorescent Materials. European Journal of Organic Chemistry, 2021, 2021, 2772-2781.	1.2	5
140	Enhancement of Hole Extraction Efficiency of Dibenzothiophenes by Substitution Engineering: Toward Additiveâ€Free Perovskite Solar Cells with Power Conversion Efficiency Exceeding 20%. Solar Rrl, 2022, 6, .	3.1	5
141	Synthesis and properties of glass-forming 2-substituted perimidines. Molecular Crystals and Liquid Crystals, 2016, 640, 1-12.	0.4	4
142	Influence of the Dielectric Constant around an Emitter on Its Delayed Fluorescence. Physical Review Applied, 2019, 12, .	1.5	4
143	Structure-properties relationship of tetrafluorostyrene-based monomers and polymers containing different donor moieties. Reactive and Functional Polymers, 2019, 143, 104323.	2.0	4
144	Synthesis and properties of quinazoline-based versatile exciplex-forming compounds. Beilstein Journal of Organic Chemistry, 2020, 16, 1142-1153.	1.3	4

#	Article	IF	CITATIONS
145	Synthesis of fused chalcogenophenocarbazoles: towards dual emission resulting from hybridized local and charge-transfer states. New Journal of Chemistry, 2020, 44, 3903-3911.	1.4	4
146	Electroluminescence of iridium(III) complexes containing F or CF3 substituents. Synthetic Metals, 2021, 273, 116673.	2.1	4
147	Donor disubstituted trifluoromethyl benzenes for various electroluminescent devices. Dyes and Pigments, 2022, 198, 109956.	2.0	4
148	Low-molar-mass and oligomeric derivatives of carbazole and triphenylamine containing thiazolo [5,4-d]thiazole moieties. Polymer Bulletin, 2023, 80, 1477-1493.	1.7	4
149	Hole-Transporting Pyrenyl-Substituted Derivatives of Fluorene and Carbazole. Molecular Crystals and Liquid Crystals, 2014, 590, 29-34.	0.4	3
150	Crystal structure of 1,3,6,8-tetrabromo-9-ethyl-9H-carbazole. Acta Crystallographica Section E: Crystallographic Communications, 2015, 71, 0373-0373.	0.2	3
151	Triphenylethylene-based emitters exhibiting aggregation induced emission enhancement and balanced bipolar charge transport for blue non-doped organic light-emitting diodes. Synthetic Metals, 2021, 271, 116641.	2.1	3
152	Bis(N-naphthyl-N-phenylamino)benzophenones as exciton-modulating materials for white TADF OLEDs with separated charge and exciton recombination zones. Dyes and Pigments, 2022, 197, 109868.	2.0	3
153	White vertical organic permeable-base light-emitting transistors obtained by mixing of blue exciton and orange interface exciplex emissions. Journal of Materials Chemistry C, 2022, 10, 9786-9793.	2.7	3
154	Synthesis and cationic polymerization of oxyranyl-functionalized indandiones. Polymer Bulletin, 2016, 73, 229-239.	1.7	2
155	HAPPY Dyes as Light Amplification Media in Thin Films. Journal of Organic Chemistry, 2021, 86, 3213-3222.	1.7	2
156	Tuneable optical gain and broadband lasing driven in electrospun polymer fibers by high dye concentration. Journal of Materials Chemistry C, 2022, 10, 2042-2048.	2.7	2
157	N,N-di(4-methoxyphenyl)hydrazones of carbazole and phenothiazine carbaldehydes containing 4-methoxyphenyl groups as hole transporting materials. Synthetic Metals, 2022, 287, 117057.	2.1	2
158	Rational Synthesis of Tetrahydrodibenzophenanthridine and Phenanthroimidazole as Efficient Blue Emitters and their Applications. European Journal of Organic Chemistry, 2020, 2020, 834-844.	1.2	1
159	Aryl-substituted acridanes as hosts for TADF-based OLEDs. Beilstein Journal of Organic Chemistry, 2020, 16, 989-1000.	1.3	1
160	Multifunctional derivatives of dimethoxy-substituted triphenylamine containing different acceptor moieties. SN Applied Sciences, 2020, 2, 1.	1.5	1
161	Crystal structure of 3-bromo-9-ethyl-9H-carbazole. Acta Crystallographica Section E: Crystallographic Communications, 2015, 71, o1067-o1068.	0.2	1
162	Methoxy-substituted carbazole-based polymers obtained by RAFT polymerization for solution-processable organic light-emitting devices. European Polymer Journal, 2022, 174, 111323.	2.6	1

#	Article	IF	CITATIONS
163	Synthesis, properties and self-polymerization of 1,8-naphthalimide-based vinyl monomer. Molecular Crystals and Liquid Crystals, 2016, 640, 30-38.	0.4	O
164	Indolyl-substituted carbazole derivatives: Electrochemical and photophysical properties and computational studies. Molecular Crystals and Liquid Crystals, 2016, 640, 59-70.	0.4	0
165	Efficient red phosphorescent OLEDs employing 2-phenylcarbazoles-based hole transport materials. , 2016, , .		0
166	Electroactive D-A derivatives bearing 2,3-dimethylindole and tetrafluorostyrene moieties: Synthesis, polymerization, DFT calculations and photophysical properties. Molecular Crystals and Liquid Crystals, 2018, 671, 24-32.	0.4	0
167	Phenanthroimidazole-based monomers: synthesis, properties and self-polymerization. Polymer Bulletin, 2019, 76, 153-174.	1.7	0
168	FEATURES OF SORPTION OF URANYL IONS BY POLYMETHACRYLIC ACID-POLY-4-VINYLPYRIDINE INTERPOLYMER SYSTEM. HimiÄeskij žurnal Kazahstana, 2021, 73, 176-184.	0.0	0
169	EXTRACTION OF YTTRIUM IONS BY INTERPOLYMER SYSTEMS BASED ON INDUSTRIAL IONITES. HimiÄeskij žurnal Kazahstana, 2021, 73, 134-141.	0.0	0
170	FEATURES OF REMOTE INTERACTION OF POLYACRYLIC ACID AND POLYETHYLENIMINE HYDROGELS. HimiÄeskij žurnal Kazahstana, 2021, 73, 160-168.	0.0	0
171	Specific features of uranyl ions extraction by interpolymer system based on polyacrylic acid and polyethyleneimine hydrogels. Kompleksnoe Ispolʹzovanie Mineralʹnogo Syrʹâ/Complex Use of Mineral Resources/Mineraldik Shikisattardy Keshendi Paidalanu, 2021, 319, 65-71.	0.1	0
172	Biomimetic Additive-Assisted Stabilization of Organic Solar Cells. , 0, , .		0
173	Naturally occurring antioxidants for photooxidatively stable flexible organic solar cells. , 0, , .		0
174	Abnormal activity of functional groups during uranyl ions sorption by polymethacrylic acid-poly-4-vinylpyridine intergel system. Bulletin of the Karaganda University Chemistry Series, 2021, 104, 47-56.	0.2	0