David M Pickup

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4506509/publications.pdf

Version: 2024-02-01

36 papers 3,100 citations

331538 21 h-index 36 g-index

36 all docs

36 docs citations

36 times ranked 3725 citing authors

#	Article	IF	CITATIONS
1	Antibacterial, remineralising and matrix metalloproteinase inhibiting scandium-doped phosphate glasses for treatment of dental caries. Dental Materials, 2022, 38, 94-107.	1.6	4
2	Activation of anion redox in P3 structure cobalt-doped sodium manganese oxide via introduction of transition metal vacancies. Journal of Power Sources, 2021, 481, 229010.	4.0	14
3	Oxygen Redox Activity through a Reductive Coupling Mechanism in the P3-Type Nickel-Doped Sodium Manganese Oxide. ACS Applied Energy Materials, 2020, 3, 184-191.	2.5	53
4	Vacancy-Enhanced Oxygen Redox Reversibility in P3-Type Magnesium-Doped Sodium Manganese Oxide Na _{0.67} Mg _{0.2} Mn _{0.8} O ₂ . ACS Applied Energy Materials, 2020, 3, 10423-10434.	2.5	17
5	Exploring the Effects of Synthetic and Postsynthetic Grinding on the Properties of the Spin Crossover Material [Fe(atrz)3](BF4)2 (atrz = 4-Amino-4H-1,2,4-Triazole). Magnetochemistry, 2020, 6, 44.	1.0	3
6	What Triggers Oxygen Loss in Oxygen Redox Cathode Materials?. Chemistry of Materials, 2019, 31, 3293-3300.	3.2	147
7	Antibacterial silver-doped phosphate-based glasses prepared by coacervation. Journal of Materials Chemistry B, 2019, 7, 7744-7755.	2.9	15
8	Oxygen redox chemistry without excess alkali-metal ions in Na2/3[Mg0.28Mn0.72]O2. Nature Chemistry, 2018, 10, 288-295.	6.6	414
9	Tuning Antisite Defect Density in Perovskite-BaLiF ₃ via Cycling between Ball Milling and Heating. Journal of Physical Chemistry Letters, 2018, 9, 5121-5124.	2.1	3
10	Alkaline-Earth Rhodium Hydroxides: Synthesis, Structures, and Thermal Decomposition to Complex Oxides. Inorganic Chemistry, 2018, 57, 11217-11224.	1.9	8
11	Is Geometric Frustration-Induced Disorder a Recipe for High Ionic Conductivity?. Journal of the American Chemical Society, 2017, 139, 5842-5848.	6.6	53
12	Neutron diffraction study of antibacterial bioactive calcium silicate solâ€gel glasses containing silver. International Journal of Applied Glass Science, 2017, 8, 364-371.	1.0	4
13	Bioactive Sol–Gel Glasses at the Atomic Scale: The Complementary Use of Advanced Probe and Computer Modeling Methods. International Journal of Applied Glass Science, 2016, 7, 147-153.	1.0	9
14	Anion Redox Chemistry in the Cobalt Free 3d Transition Metal Oxide Intercalation Electrode $Li[Li0.2Ni0.2Mn0.6]O2. Journal of the American Chemical Society, 2016, 138, 11211-11218.$	6.6	271
15	Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen. Nature Chemistry, 2016, 8, 684-691.	6.6	898
16	Electrochemical recycling of lead from hybrid organic–inorganic perovskites using deep eutectic solvents. Green Chemistry, 2016, 18, 2946-2955.	4.6	62
17	Characterisation of phosphate coacervates for potential biomedical applications. Journal of Biomaterials Applications, 2014, 28, 1226-1234.	1.2	27
18	Sol–Gel Phosphate-based Glass for Drug Delivery Applications. Journal of Biomaterials Applications, 2012, 26, 613-622.	1.2	31

#	Article	IF	Citations
19	The effect of zinc and titanium on the structure of calcium–sodium phosphate based glass. Journal of Non-Crystalline Solids, 2010, 356, 1319-1324.	1.5	23
20	Bioactive functional materials: a perspective on phosphate-based glasses. Journal of Materials Chemistry, 2009, 19, 690-701.	6.7	289
21	Sol–gel preparation and high-energy XRD study of (CaO)x(TiO2)0.5â^'x(P2O5)0.5 glasses (xÂ=Â0 and 0.25). Journal of Materials Science: Materials in Medicine, 2008, 19, 1661-1668.	1.7	13
22	Ti K-edge XANES study of the local environment of titanium in bioresorbable TiO2–CaO–Na2O–P2O5 glasses. Journal of Materials Science: Materials in Medicine, 2008, 19, 1681-1685.	1.7	21
23	Structural Characteristics of Antibacterial Bioresorbable Phosphate Glass. Advanced Functional Materials, 2008, 18, 634-639.	7.8	19
24	Antimicrobial Galliumâ€Doped Phosphateâ€Based Glasses. Advanced Functional Materials, 2008, 18, 732-741.	7.8	161
25	A structural study of sol–gel and melt-quenched phosphate-based glasses. Journal of Non-Crystalline Solids, 2007, 353, 1759-1765.	1.5	75
26	New sol–gel synthesis of a (CaO)0.3(Na2O)0.2(P2O5)0.5 bioresorbable glass and its structural characterisation. Journal of Materials Chemistry, 2007, 17, 4777.	6.7	52
27	Effect of Silver Content on the Structure and Antibacterial Activity of Silver-Doped Phosphate-Based Glasses. Antimicrobial Agents and Chemotherapy, 2007, 51, 4453-4461.	1.4	103
28	A high energy X-ray diffraction study of sol–gel derived (Ta2O5) x (SiO2)1â^'x glasses (xÂ=Â0.05, 0.11 and) Tj 153-159.	ETQq0 0 (1.1) rgBT /Overlo 1
29	Solid State NMR as A Probe of Inorganic Materials:Examples From Glasses and Sol-Gels. Materials Research Society Symposia Proceedings, 2006, 984, 1.	0.1	1
30	The structure of a bioactive calcia–silica sol–gel glass. Journal of Materials Chemistry, 2005, 15, 2369.	6.7	60
31	Sol–gel synthesis of the P2O5–CaO–Na2O–SiO2 system as a novel bioresorbable glass. Journal of Materials Chemistry, 2005, 15, 2134.	6.7	69
32	An Aqueous Reduction Method To Synthesize Spinel-LiMn2O4Nanoparticles as a Cathode Material for Rechargeable Lithium-Ion Batteries. Chemistry of Materials, 2003, 15, 4211-4216.	3.2	60
33	6Li MAS NMR study of stoichiometric and chemically delithiated LixMn2O4 spinels. Journal of Materials Chemistry, 2003, 13, 963-968.	6.7	10
34	Catalytic Transformation of Carbon Black to Carbon Nanotubes. Chemistry of Materials, 2002, 14, 4498-4501.	3.2	17
35	Structure of $(Ta2O5)x(SiO2)1$ \hat{a} x xerogels (x = 0.05, 0.11, 0.18, 0.25 and 1.0) from FTIR, 29Si and 17O MAS NMR and EXAFS. Journal of Materials Chemistry, 2000, 10, 1887-1894.	6.7	40
36	Synthesis, characterisation and performance of (TiO2)0.18(SiO2)0.82 xerogel catalysts. Journal of Materials Chemistry, 2000, 10, 2495-2501.	6.7	53