List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4506506/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Geochemical signatures of rare earth elements and yttrium exploited by acid solution mining around an ion-adsorption type deposit: Role of source control and potential for recovery. Science of the Total Environment, 2022, 804, 150241.	3.9	14
2	Remote sensing of wetland evolution in predicting shallow groundwater arsenic distribution in two typical inland basins. Science of the Total Environment, 2022, 806, 150496.	3.9	20
3	Relative importance of hydrogeochemical and hydrogeological processes on arsenic enrichment in groundwater of the Yinchuan Basin, China. Applied Geochemistry, 2022, 137, 105180.	1.4	6
4	Variations and driving mechanism of dissolved arsenic in sediment porewater near wetland. Applied Geochemistry, 2022, 137, 105185.	1.4	4
5	Spatial variation in dissolved phosphorus and interactions with arsenic in response to changing redox conditions in floodplain aquifers of the Hetao Basin, Inner Mongolia. Water Research, 2022, 209, 117930.	5.3	18
6	Increases in groundwater arsenic concentrations and risk under decadal groundwater withdrawal in the lower reaches of the Yellow River basin, Henan Province, China. Environmental Pollution, 2022, 296, 118741.	3.7	20
7	Silicate weathering contributed to arsenic enrichment in geotherm-affected groundwater in Pliocene aquifers of the Guide basin, China. Journal of Hydrology, 2022, 606, 127444.	2.3	15
8	Influence of seawater intrusion on the hot springs in a coastal area: The case of the Anak-Sinchon Uplift, Korean Peninsula. Journal of Hydrology, 2022, 607, 127509.	2.3	2
9	Simultaneous bio-reduction of nitrate and Cr(VI) by mechanical milling activated corn straw. Journal of Hazardous Materials, 2022, 429, 128258.	6.5	18
10	Recognizing the groundwater related to chronic kidney disease of unknown etiology by humic-like organic matter. Npj Clean Water, 2022, 5, .	3.1	12
11	Behaviors of lithium and its isotopes in groundwater with different concentrations of dissolved CO2. Geochimica Et Cosmochimica Acta, 2022, 326, 313-327.	1.6	15
12	Genesis of high hexavalent chromium groundwater in deep aquifers from loess plateau of Northern Shaanxi, China. Water Research, 2022, 216, 118323.	5.3	15
13	Effects of low molecular weight organic acids with different functional groups on arsenate adsorption on birnessite. Journal of Hazardous Materials, 2022, 436, 129108.	6.5	10
14	Limited roles of anthropogenic activities on arsenic mobilization in groundwater from the Yinchuan Basin, China. Journal of Hydrology, 2022, 610, 127910.	2.3	6
15	Genome-Resolved Metagenomic Analysis of Groundwater: Insights into Arsenic Mobilization in Biogeochemical Interaction Networks. Environmental Science & Technology, 2022, 56, 10105-10119.	4.6	25
16	Removal of Arsenate from Aqueous Solution by Synthetic Siderite-Modified Biochar: Characteristics and Mechanisms. Water, Air, and Soil Pollution, 2022, 233, .	1.1	1
17	Sediment geochemistry and its influence on chromium enrichment in porewater from a deep aquifer in the Baiyangdian Basin, China. Journal of Soils and Sediments, 2022, 22, 2815-2826.	1.5	3
18	Forms and mobility of heavy metals/metalloids in sewage-irrigated soils in the North China Plain. Journal of Soils and Sediments, 2021, 21, 215-234.	1.5	6

#	Article	IF	CITATIONS
19	Unraveling roles of dissolved organic matter in high arsenic groundwater based on molecular and optical signatures. Journal of Hazardous Materials, 2021, 406, 124702.	6.5	44
20	A critical review of abiotic and microbially-mediated chemical reduction rates of Fe(III) (oxyhydr)oxides using a reactivity model. Applied Geochemistry, 2021, 126, 104895.	1.4	10
21	Vertical redox zones of Fe–S–As coupled mineralogy in the sediments of Hetao Basin – Constraints for groundwater As contamination. Journal of Hazardous Materials, 2021, 408, 124924.	6.5	15
22	Unraveling influences of nitrogen cycling on arsenic enrichment in groundwater from the Hetao Basin using geochemical and multi-isotopic approaches. Journal of Hydrology, 2021, 595, 125981.	2.3	47
23	Identification of processes mobilizing organic molecules and arsenic in geothermal confined groundwater from Pliocene aquifers. Water Research, 2021, 198, 117140.	5.3	31
24	Hydrogeochemical and geothermal controls on the formation of high fluoride groundwater. Journal of Hydrology, 2021, 598, 126372.	2.3	35
25	Risk factors for endemic chronic kidney disease of unknown etiology in Sri Lanka: Retrospect of water security in the dry zone. Science of the Total Environment, 2021, 795, 148839.	3.9	25
26	Distribution of rare earth elements in sediments of the North China Plain: A probe of sedimentation process. Applied Geochemistry, 2021, 134, 105089.	1.4	22
27	Controls on distributions of sulphate, fluoride, and salinity in aquitard porewater from the North China Plain: Long-term implications for groundwater quality. Journal of Hydrology, 2021, 603, 126828.	2.3	28
28	Influence of Legacy Mercury on Antibiotic Resistomes: Evidence from Agricultural Soils with Different Cropping Systems. Environmental Science & Technology, 2021, 55, 13913-13922.	4.6	19
29	Understanding Microbial Arsenic-Mobilization in Multiple Aquifers: Insight from DNA and RNA Analyses. Environmental Science & Technology, 2021, 55, 15181-15195.	4.6	22
30	The provenance of deep groundwater and its relation to arsenic distribution in the northwestern Hetao Basin, Inner Mongolia. Environmental Geochemistry and Health, 2020, 42, 1429-1451.	1.8	5
31	Submarine groundwater discharge drives coastal water quality and nutrient budgets at small and large scales. Geochimica Et Cosmochimica Acta, 2020, 290, 201-215.	1.6	53
32	High Hexavalent Chromium Concentration in Groundwater from a Deep Aquifer in the Baiyangdian Basin of the North China Plain. Environmental Science & Technology, 2020, 54, 10068-10077.	4.6	46
33	Refractory Humic-like Substances: Tracking Environmental Impacts of Anthropogenic Groundwater Recharge. Environmental Science & Technology, 2020, 54, 15778-15788.	4.6	37
34	Arsenite oxidation and arsenic adsorption on birnessite in the absence and the presence of citrate or EDTA. Environmental Science and Pollution Research, 2020, 27, 43769-43785.	2.7	11
35	Experiment-based geochemical modeling of Arsenic(V) and Arsenic(III) adsorption onto aquifer sediments from an inland basin. Journal of Hydrology, 2020, 588, 125094.	2.3	18
36	Molecular Evidence of Arsenic Mobility Linked to Biodegradable Organic Matter. Environmental Science & Technology, 2020, 54, 7280-7290.	4.6	86

#	Article	IF	CITATIONS
37	Improvement of evaluation of water age and submarine groundwater discharge: A case study in Daya Bay, China. Journal of Hydrology, 2020, 586, 124775.	2.3	20
38	Impact of sedimentation history for As distribution in Late Pleistocene-Holocene sediments in the Hetao Basin, China. Journal of Soils and Sediments, 2020, 20, 4070-4082.	1.5	8
39	Arsenic sequestration in pyrite and greigite in the buried peat of As-contaminated aquifers. Geochimica Et Cosmochimica Acta, 2020, 284, 107-119.	1.6	22
40	Mechanisms of groundwater arsenic variations induced by extraction in the western Hetao Basin, Inner Mongolia, China. Journal of Hydrology, 2020, 583, 124599.	2.3	33
41	Linking microbial community composition to hydrogeochemistry in the western Hetao Basin: Potential importance of ammonium as an electron donor during arsenic mobilization. Environment International, 2020, 136, 105489.	4.8	53
42	Quantifying Geochemical Processes of Arsenic Mobility in Groundwater From an Inland Basin Using a Reactive Transport Model. Water Resources Research, 2020, 56, e2019WR025492.	1.7	33
43	Role of Manganese Oxyhydroxides in the Transport of Rare Earth Elements Along a Groundwater Flow Path. International Journal of Environmental Research and Public Health, 2019, 16, 2263.	1.2	8
44	Differences in hydrogeochemistry between shallow and deep aquifers in the Baiyangdian basin, China. E3S Web of Conferences, 2019, 98, 07009.	0.2	0
45	Indications that weathering of evaporite minerals affects groundwater salinity and As mobilization in aquifers of the northwestern Hetao Basin, China. Applied Geochemistry, 2019, 109, 104416.	1.4	19
46	Mechanisms of arsenite oxidation and arsenate adsorption by a poorly crystalline manganese oxide in the presence of low molecular weight organic acids. E3S Web of Conferences, 2019, 98, 04009.	0.2	1
47	Characteristics of dissolved organic matter in shallow groundwater in the Hetao basin. E3S Web of Conferences, 2019, 98, 02009.	0.2	0
48	Arsenic mobilization in the piedmont area of the Hetao basin: an insight from a reactive transport model. E3S Web of Conferences, 2019, 98, 05008.	0.2	0
49	Impacts of groundwater extraction on groundwater flow and arsenic distribution in the western Hetao Basin, Inner Mongolia, China. E3S Web of Conferences, 2019, 98, 09037.	0.2	0
50	The provenance of deep groundwater and its relation to arsenic distribution in the northwestern Hetao Basin, Inner Mongolia. E3S Web of Conferences, 2019, 98, 09015.	0.2	0
51	Model-Based Interpretation of Groundwater Arsenic Mobility during in Situ Reductive Transformation of Ferrihydrite. Environmental Science & Technology, 2019, 53, 6845-6854.	4.6	49
52	Multi-dimensional habitat vegetation restoration mode for lake riparian zone, Taihu, China. Ecological Engineering, 2019, 134, 56-64.	1.6	12
53	Facilitated arsenic immobilization by biogenic ferrihydrite-goethite biphasic Fe(III) minerals (Fh-Gt) Tj ETQq1 1 C	.784314 rg 4.2	gBT/Overloc
54	Roles of different molecular weights of dissolved organic matter in arsenic enrichment in groundwater: Evidences from ultrafiltration and EEM-PARAFAC. Applied Geochemistry, 2019, 104, 124-134.	1.4	52

4

#	Article	IF	CITATIONS
55	Modeling transport of arsenic through modified granular natural siderite filters for arsenic removal. Geoscience Frontiers, 2019, 10, 1755-1764.	4.3	5
56	Controls of organic matter bioreactivity on arsenic mobility in shallow aquifers of the Hetao Basin, P.R. China. Journal of Hydrology, 2019, 571, 448-459.	2.3	92
57	Surface complexation modeling of arsenic mobilization from goethite: Interpretation of an in-situ experiment. Geochimica Et Cosmochimica Acta, 2019, 248, 274-288.	1.6	52
58	Influences of groundwater extraction on flow dynamics and arsenic levels in the western Hetao Basin, Inner Mongolia, China. Hydrogeology Journal, 2018, 26, 1499-1512.	0.9	20
59	Partitioning and reactivity of iron oxide minerals in aquifer sediments hosting high arsenic groundwater from the Hetao basin, P. R. China. Applied Geochemistry, 2018, 89, 190-201.	1.4	28
60	Enhanced transport of ferrihydrite colloid by chain-shaped humic acid colloid in saturated porous media. Science of the Total Environment, 2018, 621, 1581-1590.	3.9	66
61	Controls of paleochannels on groundwater arsenic distribution in shallow aquifers of alluvial plain in the Hetao Basin, China. Science of the Total Environment, 2018, 613-614, 958-968.	3.9	39
62	Change of arsenite adsorption mechanism during aging of 2-line ferrihydrite in the absence of oxygen. Applied Geochemistry, 2018, 88, 149-157.	1.4	19
63	Impact of Hydrous Manganese and Ferric Oxides on the Behavior of Aqueous Rare Earth Elements (REE): Evidence from a Modeling Approach and Implication for the Sink of REE. International Journal of Environmental Research and Public Health, 2018, 15, 2837.	1.2	6
64	High Radionuclides in Groundwater of an Inland Basin from Northwest China: Origin and Fate. ACS Earth and Space Chemistry, 2018, 2, 1137-1144.	1.2	14
65	Distinct effect of humic acid on ferrihydrite colloid-facilitated transport of arsenic in saturated media at different pH. Chemosphere, 2018, 212, 794-801.	4.2	48
66	Characteristics and implication of stable carbon isotope in high arsenic groundwater systems in the northwest Hetao Basin, Inner Mongolia, China. Journal of Asian Earth Sciences, 2018, 163, 70-79.	1.0	33
67	Characteristics and compound-specific carbon isotope compositions of sedimentary lipids in high arsenic aquifers in the Hetao basin, Inner Mongolia. Environmental Pollution, 2018, 241, 85-95.	3.7	17
68	Distribution, formation and human-induced evolution of geogenic contaminated groundwater in China: A review. Science of the Total Environment, 2018, 643, 967-993.	3.9	150
69	Fractionation of Mg isotopes by clay formation and calcite precipitation in groundwater with long residence times in a sandstone aquifer, Ordos Basin, China. Geochimica Et Cosmochimica Acta, 2018, 237, 261-274.	1.6	29
70	Differences in major ions as well as hydrogen and oxygen isotopes of sediment pore water and lake water. Water Science and Engineering, 2018, 11, 147-156.	1.4	3
71	High arsenic groundwater in the Guide basin, northwestern China: Distribution and genesis mechanisms. Science of the Total Environment, 2018, 640-641, 194-206.	3.9	67
72	On the scalability of hydrogeochemical factors controlling arsenic mobility in three major inland basins of P.R. China. Applied Geochemistry, 2017, 77, 15-23.	1.4	22

#	Article	IF	CITATIONS
73	Multiple variants in 5q31.1 are associated with systemic lupus erythematosus susceptibility and subphenotypes in the Han Chinese population. British Journal of Dermatology, 2017, 177, 801-808.	1.4	7
74	Arsenic Migration and Transformation in Aquifer Sediments under Successive Redox Oscillations. Procedia Earth and Planetary Science, 2017, 17, 384-387.	0.6	3
75	Disparity of Adsorbed Arsenic Species and Fractions on the Soil and Soil Colloids. Procedia Earth and Planetary Science, 2017, 17, 642-645.	0.6	4
76	Rare Earth Elements as Indicators of Groundwater Mixing in the North China Plain: A Case Study in the Area of Hengshui City, China. Procedia Earth and Planetary Science, 2017, 17, 396-399.	0.6	3
77	Impact of natural organic matter on arsenic removal by modified granular natural siderite: Evidence of ternary complex formation by HPSEC-UV-ICP-MS. Chemosphere, 2017, 168, 777-785.	4.2	42
78	Entrainment Performance and Model of Multidowncomer Sieve Trays. Industrial & Engineering Chemistry Research, 2017, 56, 6755-6763.	1.8	3
79	Sources of groundwater salinity and potential impact on arsenic mobility in the western Hetao Basin, Inner Mongolia. Science of the Total Environment, 2017, 601-602, 691-702.	3.9	80
80	Rare earth elements sorption to iron oxyhydroxide: Model development and application to groundwater. Applied Geochemistry, 2017, 87, 158-166.	1.4	70
81	Biomarkers of arsenic exposure in arsenic-affected areas of the Hetao Basin, Inner Mongolia. Science of the Total Environment, 2017, 609, 524-534.	3.9	30
82	Soluble components of sediments and their relation with dissolved arsenic in aquifers from the Hetao Basin, Inner Mongolia. Journal of Soils and Sediments, 2017, 17, 2899-2911.	1.5	11
83	Arsenate removal from aqueous solution by siderite synthesized under high temperature and high pressure. Environmental Science and Pollution Research, 2017, 24, 19402-19411.	2.7	8
84	In-situ mobilization and transformation of iron oxides-adsorbed arsenate in natural groundwater. Journal of Hazardous Materials, 2017, 321, 228-237.	6.5	54
85	Distribution of groundwater arsenic in Xinjiang, P.R. China. Applied Geochemistry, 2017, 77, 116-125.	1.4	35
86	Hydrogeological and Geochemical Comparison of High Arsenic Groundwaters in Inland Basins, P.R. China. Procedia Earth and Planetary Science, 2017, 17, 416-419.	0.6	11
87	Blocking effect of colloids on arsenate adsorption during co-transport through saturated sand columns. Environmental Pollution, 2016, 213, 638-647.	3.7	50
88	Sulfur Cycling-Related Biogeochemical Processes of Arsenic Mobilization in the Western Hetao Basin, China: Evidence from Multiple Isotope Approaches. Environmental Science & Technology, 2016, 50, 12650-12659.	4.6	97
89	Stimulation of Fe(II) Oxidation, Biogenic Lepidocrocite Formation, and Arsenic Immobilization by <i>Pseudogulbenkiania</i> Sp. Strain 2002. Environmental Science & Technology, 2016, 50, 6449-6458.	4.6	63
90	Occurrence and hydrogeochemical characteristics of high-fluoride groundwater in Xiji County, southern part of Ningxia Province, China. Environmental Geochemistry and Health, 2016, 38, 275-290.	1.8	35

#	Article	IF	CITATIONS
91	Estimation of submarine groundwater discharge and associated nutrient fluxes in eastern Laizhou Bay, China using 222Rn. Journal of Hydrology, 2016, 533, 103-113.	2.3	76
92	Contrasting distributions of groundwater arsenic and uranium in the western Hetao basin, Inner Mongolia: Implication for origins and fate controls. Science of the Total Environment, 2016, 541, 1172-1190.	3.9	91
93	Aqueous geochemistry and its influence on the partitioning of arsenic between aquifer sediments and groundwater: a case study in the northwest of the Hetao Basin. Environmental Earth Sciences, 2016, 75, 1.	1.3	11
94	Spontaneous arsenic (III) oxidation with bioelectricity generation in single-chamber microbial fuel cells. Journal of Hazardous Materials, 2016, 306, 8-12.	6.5	47
95	Geochemical behaviors of rare earth elements in groundwater along a flow path in the North China Plain. Journal of Asian Earth Sciences, 2016, 117, 33-51.	1.0	71
96	Analytical methods and application of stable isotopes in dissolved organic carbon and inorganic carbon in groundwater. Rapid Communications in Mass Spectrometry, 2015, 29, 1827-1835.	0.7	35
97	Arsenic Removal and Transformation by Pseudomonas sp. Strain GE-1-Induced Ferrihydrite: Co-precipitation Versus Adsorption. Water, Air, and Soil Pollution, 2015, 226, 1.	1.1	19
98	Arsenic accumulation in the roots of Helianthus annuus and Zea mays by irrigation with arsenic-rich groundwater: Insights from synchrotron X-ray fluorescence imaging. Chemie Der Erde, 2015, 75, 261-270.	0.8	27
99	Electrochemical decolorization of methyl orange powered by bioelectricity from single-chamber microbial fuel cells. Bioresource Technology, 2015, 181, 360-362.	4.8	52
100	Principal component analysis and hierarchical cluster analyses of arsenic groundwater geochemistry in the Hetao basin, Inner Mongolia. Chemie Der Erde, 2015, 75, 197-205.	0.8	64
101	Distribution of Arsenite-Oxidizing Bacteria and its Correlation with Temperature in Hot Springs of the Tibetan-Yunnan Geothermal Zone in Western China. Geomicrobiology Journal, 2015, 32, 482-493.	1.0	7
102	Arsenate reduction and mobilization in the presence of indigenous aerobic bacteria obtained from high arsenic aquifers of the Hetao basin, Inner Mongolia. Environmental Pollution, 2015, 203, 50-59.	3.7	81
103	Hydrogeochemical characterization of groundwater flow systems in the discharge area of a river basin. Journal of Hydrology, 2015, 527, 433-441.	2.3	111
104	Occurrence and formation of high fluoride groundwater in the Hengshui area of the North China Plain. Environmental Earth Sciences, 2015, 74, 2329-2340.	1.3	41
105	Arsenic Adsorption and its Fractions on Aquifer Sediment: Effect of pH, Arsenic Species, and Iron/Manganese Minerals. Water, Air, and Soil Pollution, 2015, 226, 1.	1.1	46
106	Effect of Fluoride on Arsenic Uptake from Arsenic-Contaminated Groundwater usingPteris vittataL International Journal of Phytoremediation, 2015, 17, 355-362.	1.7	8
107	Arsenic release from shallow aquifers of the Hetao basin, Inner Mongolia: evidence from bacterial community in aquifer sediments and groundwater. Ecotoxicology, 2014, 23, 1900-1914.	1.1	30
108	Adsorption and heterogeneous oxidation of arsenite on modified granular natural siderite: Characterization and behaviors. Applied Geochemistry, 2014, 48, 184-192.	1.4	31

#	Article	IF	CITATIONS
109	Simultaneous Removal of Fluoride and Arsenic from Aqueous Solution using Activated Red Mud. Separation Science and Technology, 2014, 49, 2412-2425.	1.3	28
110	Hydrogeochemical contrasts between low and high arsenic groundwater and its implications for arsenic mobilization in shallow aquifers of the northern Yinchuan Basin, P.R. China. Journal of Hydrology, 2014, 518, 464-476.	2.3	61
111	Arsenic contamination of the soil–wheat system irrigated with high arsenic groundwater in the Hetao Basin, Inner Mongolia, China. Science of the Total Environment, 2014, 496, 479-487.	3.9	67
112	Behavior and mechanism of arsenate adsorption on activated natural siderite: evidences from FTIR and XANES analysis. Environmental Science and Pollution Research, 2014, 21, 1944-1953.	2.7	41
113	Exponential Function Shortcut Method for the Calculation of the Number of Theoretical Plates in a Distillation Column. Industrial & Engineering Chemistry Research, 2014, 53, 14830-14840.	1.8	2
114	A review of high arsenic groundwater in Mainland and Taiwan, China: Distribution, characteristics and geochemical processes. Applied Geochemistry, 2014, 41, 196-217.	1.4	285
115	Evolution of groundwater major components in the Hebei Plain: Evidences from 30-year monitoring data. Journal of Earth Science (Wuhan, China), 2014, 25, 563-574.	1.1	16
116	Hydrogeochemical zonation and its implication for arsenic mobilization in deep groundwaters near alluvial fans in the Hetao Basin, Inner Mongolia. Journal of Hydrology, 2014, 518, 410-420.	2.3	84
117	Arsenic mobilization in aquifers of the southwest Songnen basin, P.R. China: Evidences from chemical and isotopic characteristics. Science of the Total Environment, 2014, 490, 590-602.	3.9	74
118	Measuring in situ vertical hydraulic conductivity in tidal environments. Advances in Water Resources, 2014, 70, 118-130.	1.7	20
119	Groundwater hydrochemical characteristics and processes along flow paths in the North China Plain. Journal of Asian Earth Sciences, 2013, 70-71, 250-264.	1.0	137
120	Spatial and temporal evolutions of groundwater arsenic approximately along the flow path in the Hetao basin, Inner Mongolia. Science Bulletin, 2013, 58, 3070-3079.	1.7	28
121	Acclimation of arsenic-resistant Fe(II)-oxidizing bacteria in aqueous environment. International Biodeterioration and Biodegradation, 2013, 76, 86-91.	1.9	27
122	Hydrogeochemical Zonation of Deep Groundwaters Near Langshan Mountain of the Hetao Basin, Inner Mongolia. Procedia Earth and Planetary Science, 2013, 7, 393-396.	0.6	0
123	Geochemistry of High Arsenic Groundwaters in the Yinchuan Basin, P.R. China. Procedia Earth and Planetary Science, 2013, 7, 321-324.	0.6	6
124	Fluoride adsorption on modified natural siderite: Optimization and performance. Chemical Engineering Journal, 2013, 223, 183-191.	6.6	52
125	Dynamic behaviors of water levels and arsenic concentration in shallow groundwater from the Hetao Basin, Inner Mongolia. Journal of Geochemical Exploration, 2013, 135, 130-140.	1.5	41
126	Characteristics of Rare Earth Elements in Groundwaters along the Flow Path in the North China Plain. Procedia Earth and Planetary Science, 2013, 7, 940-943.	0.6	3

#	Article	IF	CITATIONS
127	Geochemical Comparison of High and Low Arsenic Groundwater in the Hetao Basin, Inner Mongolia. Procedia Earth and Planetary Science, 2013, 7, 313-316.	0.6	2
128	Pathways of coupled arsenic and iron cycling in high arsenic groundwater of the Hetao basin, Inner Mongolia, China: An iron isotope approach. Geochimica Et Cosmochimica Acta, 2013, 112, 130-145.	1.6	109
129	Enhancement of Arsenic Adsorption during Mineral Transformation from Siderite to Goethite: Mechanism and Application. Environmental Science & Technology, 2013, 47, 1009-1016.	4.6	131
130	Study on Arsenic Removal in the Simulating Constructed Wetland. Advanced Materials Research, 2013, 777, 386-389.	0.3	1
131	Separation of Inorganic Arsenic Species from Aqueous Solution by Anion Exchange Column and Its Application in Study of Arsenic Removal. Chinese Journal of Analytical Chemistry, 2013, 40, 1092-1097.	0.9	Ο
132	Arsenic Uptake from Arsenic-Contaminated Water Using Hyperaccumulator Pteris vittata L.: Effect of Chloride, Bicarbonate, and Arsenic Species. Water, Air, and Soil Pollution, 2012, 223, 4209-4220.	1.1	16
133	Spatial variation in arsenic and fluoride concentrations of shallow groundwater from the town of Shahai in the Hetao basin, Inner Mongolia. Applied Geochemistry, 2012, 27, 2187-2196.	1.4	148
134	Impact of irrigation with high arsenic burdened groundwater on the soil–plant system: Results from a case study in the Inner Mongolia, China. Environmental Pollution, 2012, 163, 8-13.	3.7	65
135	Natural Magnetite Solid Phase Extraction-Inductively Coupled Plasma Mass Spectrometry for Determination of Arsenic in Water. Chinese Journal of Analytical Chemistry, 2012, 39, 115-119.	0.9	Ο
136	Control of organic and iron colloids on arsenic partition and transport in high arsenic groundwaters in the Hetao basin, Inner Mongolia. Applied Geochemistry, 2011, 26, 360-370.	1.4	76
137	Hydrogeological and biogeochemical constrains of arsenic mobilization in shallow aquifers from the Hetao basin, Inner Mongolia. Environmental Pollution, 2011, 159, 876-883.	3.7	120
138	Removal of arsenite from water by synthetic siderite: Behaviors and mechanisms. Journal of Hazardous Materials, 2011, 186, 1847-1854.	6.5	73
139	Adsorption of fluoride on synthetic siderite from aqueous solution. Journal of Fluorine Chemistry, 2010, 131, 635-641.	0.9	78
140	Arsenate removal from aqueous solution using synthetic siderite. Journal of Hazardous Materials, 2010, 176, 174-180.	6.5	75
141	The Study of Aqueous Colloid in High Arsenic Groundwater: Insights in the Hetao Basin by Ultrafiltrating. International Conference on Bioinformatics and Biomedical Engineering: [proceedings] International Conference on Bioinformatics and Biomedical Engineering, 2010, , .	0.0	0
142	Geochemical controls on arsenic and rare earth elements approximately along a groundwater flow path in the shallow aquifer of the Hetao Basin, Inner Mongolia. Chemical Geology, 2010, 270, 117-125.	1.4	124
143	Bio-geological processes of nitrogen transport and transformation in the aeration zone and aquifer. Hydrological Sciences Journal, 2009, 54, 316-326.	1.2	8
144	Characteristics of arsenic adsorption from aqueous solution: Effect of arsenic species and natural adsorbents. Applied Geochemistry, 2009, 24, 657-663.	1.4	25

#	Article	IF	CITATIONS
145	Role of colloidal particles for hydrogeochemistry in As-affected aquifers of the Hetao Basin, Inner Mongolia. Geochemical Journal, 2009, 43, 227-234.	0.5	11
146	Adsorption of arsenic species from water using activated siderite–hematite column filters. Journal of Hazardous Materials, 2008, 151, 628-635.	6.5	44
147	Groundwater geochemistry and its implications for arsenic mobilization in shallow aquifers of the Hetao Basin, Inner Mongolia. Science of the Total Environment, 2008, 393, 131-144.	3.9	255
148	Effect of indigenous bacteria on geochemical behavior of arsenic in aquifer sediments from the Hetao Basin, Inner Mongolia: Evidence from sediment incubations. Applied Geochemistry, 2008, 23, 3267-3277.	1.4	64
149	Removal of arsenic from aqueous solution by natural siderite and hematite. Applied Geochemistry, 2007, 22, 1039-1051.	1.4	148
150	Adsorption of arsenic(III) and arsenic(V) from groundwater using natural siderite as the adsorbent. Journal of Colloid and Interface Science, 2007, 315, 47-53.	5.0	162
151	Arsenic removal from water using natural iron mineral–quartz sand columns. Science of the Total Environment, 2007, 377, 142-151.	3.9	56
152	Effects of water table and fertilization management on nitrogen loading to groundwater. Agricultural Water Management, 2006, 82, 86-98.	2.4	22
153	Geochemical characteristics of shallow groundwater in Datong basin, northwestern China. Journal of Geochemical Exploration, 2005, 87, 109-120.	1.5	158
154	Specific vulnerability assessment using the MLPI model in Datong city, Shanxi province, China. Environmental Geology, 2004, 45, 401-407.	1.2	15
155	Hydrogeochemical processes in shallow quaternary aquifers from the northern part of the Datong Basin, China. Applied Geochemistry, 2004, 19, 19-27.	1.4	120
156	Natural Occurrence of Arsenic in Shallow Groundwater, Shanyin, Datong Basin, China. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2003, 38, 2565-2580.	0.9	75
157	Accumulation and Risk Assessment of Heavy Metals in Vegetables in Wastewater Irrigation Areas. Advanced Materials Research, 0, 183-185, 527-531.	0.3	3
158	Arsenic Uptake from Arsenic-Contaminated Water Using <i>Pteris vittata</i> L. and <i>Polystichum craspedosorum</i> . Applied Mechanics and Materials, 0, 295-298, 1139-1143.	0.2	1
159	Different forms of phosphorous transformation and release prediction with environment factor in sediments from Lake Dongting, China. , 0, 214, 402-412.		6