
Xiao-Xia Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/45064/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Highly active CuO/OMS-2 catalysts for low-temperature CO oxidation. Chemical Engineering Journal, 2010, 162, 151-157.	12.7	86
2	One-Pot Approach to 1,2-Disubstituted Indoles via Cu(II)-Catalyzed Coupling/Cyclization under Aerobic Conditions and Its Application for the Synthesis of Polycyclic Indoles. Journal of Organic Chemistry, 2014, 79, 9000-9008.	3.2	66
3	Copper-Catalyzed Domino Addition/Double Cyclization: An Approach to Polycyclic Benzimidazole Derivatives. Journal of Organic Chemistry, 2014, 79, 1749-1757.	3.2	59
4	BrÃ,nsted Acidic Ionic Liquid: An Efficient and Reusable Catalyst for the Synthesis of 3,4â€Đihydropyrimidinâ€2(1H)â€ones. Synthetic Communications, 2006, 36, 1503-1513.	2.1	56
5	Amorphous Co–Mo–P–O Bifunctional Electrocatalyst via Facile Electrodeposition for Overall Water Splitting. ACS Sustainable Chemistry and Engineering, 2020, 8, 2835-2842.	6.7	56
6	Copper-catalyzed domino intramolecular cyclization: a facile and efficient approach to polycyclic indole derivatives. Organic and Biomolecular Chemistry, 2012, 10, 1602.	2.8	49
7	Remarkable rate acceleration of water-promoted nucleophilic substitution of Baylis–Hillman acetate: a facile and highly efficient synthesis of N-substituted imidazole. Tetrahedron Letters, 2005, 46, 5233-5237.	1.4	44
8	Synthesis of α-Glycosyl Thiols by Stereospecific Ring-Opening of 1,6-Anhydrosugars. Journal of Organic Chemistry, 2011, 76, 10187-10197.	3.2	41
9	Studies on the oxidation properties of nanopowder CeO2-based solid solution catalysts for model soot combustion. Thermochimica Acta, 2008, 478, 45-50.	2.7	37
10	Enantioselective hydrogenation of olefins with axial chiral iridium QUINAP complex. Tetrahedron Letters, 2007, 48, 3915-3917.	1.4	33
11	One-Pot Synthesis of Pyrrolo[3,2,1- <i>kl</i>]phenothiazines through Copper-Catalyzed Tandem Coupling/Double Cyclization Reaction. Journal of Organic Chemistry, 2015, 80, 11108-11114.	3.2	33
12	Developments in the construction of cyclopropanols. Organic and Biomolecular Chemistry, 2020, 18, 191-204.	2.8	32
13	Samarium diiodide promoted formation of 1,2-diketones and 1-acylamido-2-substituted benzimidazoles from N-acylbenzotriazoles. Tetrahedron, 2003, 59, 4201-4207.	1.9	29
14	Synthesis of benzimidazo[2,1-b]benzothiazole derivatives through sequential Cu-catalyzed domino coupling and Pd-catalyzed Suzuki reaction. Tetrahedron Letters, 2014, 55, 3367-3373.	1.4	28
15	Features and applications of reactions of α,β-unsaturated N-acylbenzotriazoles with amino compounds. Tetrahedron, 2008, 64, 6510-6521.	1.9	26
16	Formation of 1,2-diketones by samarium diiodide promoted reaction of N-acylbenzotriazoles. Tetrahedron Letters, 2002, 43, 5431-5433.	1.4	24
17	External oxidant-free oxidation/[3+2] cycloaddition/aromatization cascade: electrochemical synthesis of polycyclic N-heterocycles. Chemical Communications, 2019, 55, 8398-8401.	4.1	24
18	The main factor to improve the performance of CoSe ₂ for photocatalytic CO ₂ reduction: element doping or phase transformation. Journal of Materials Chemistry A, 2020, 8, 4457-4463.	10.3	23

#	Article	IF	CITATIONS
19	Copper atalyzed Domino S _N 2′/Coupling Reaction: A Versatile and Facile Synthesis of Cyclic Compounds from Baylis–Hillman Acetates. Advanced Synthesis and Catalysis, 2013, 355, 1185-1192.	4.3	22
20	Self-assembled CoTiO ₃ nanorods with controllable oxygen vacancies for the efficient photochemical reduction of CO ₂ to CO. Catalysis Science and Technology, 2020, 10, 2040-2046.	4.1	22
21	Facile and Selective Synthesis of Imidazobenzimidazoles <i>via</i> a Copperâ€Catalysed Domino Addition/Cycloisomerisation/ Coupling Process. Advanced Synthesis and Catalysis, 2016, 358, 653-660.	4.3	21
22	Dehydrochlorination of 1, 1, 2-trichloroethane over SiO2-supported alkali and transition metal catalysts: Tunable selectivity controlled by the acid - base properties of the catalysts. Applied Catalysis B: Environmental, 2018, 236, 368-376.	20.2	21
23	MOF-derived Co _{1.11} Te ₂ with half-metallic character for efficient photochemical conversion of CO ₂ under visible-light irradiation. Chemical Communications, 2019, 55, 6862-6865.	4.1	21
24	Regioselective addition of thiophenol to α,β-unsaturated N-acylbenzotriazoles. Tetrahedron Letters, 2011, 52, 4906-4910.	1.4	20
25	Highly regioselective Friedel–Crafts alkylation of indoles with α,β-unsaturated N-acylbenzotriazoles. Tetrahedron Letters, 2006, 47, 3767-3771.	1.4	19
26	Effects of NaCl on Pt/ZrO2 catalysts for selective hydrogenation of crotonaldehyde. Applied Catalysis A: General, 2010, 388, 134-140.	4.3	19
27	An efficient and facile synthesis of benzimidazo[1,2-a]benzimidazoles via copper-catalyzed domino addition/double cyclization. RSC Advances, 2014, 4, 21904-21908.	3.6	19
28	Intriguing roles of reactive intermediates in dissociation chemistry of N-phenylcinnamides. Organic and Biomolecular Chemistry, 2012, 10, 7070.	2.8	18
29	Synthesis of Polyketide Stereoarrays Enabled by a Traceless Oxoniaâ€Cope Rearrangement. Angewandte Chemie - International Edition, 2014, 53, 11600-11604.	13.8	18
30	Allylsamarium Bromide-Mediated Cascade Cyclization of Homoallylic Esters. Synthesis of 2-(2-Hydroxyalkyl)cyclopropanols and 2-(2-Hydroxyethyl)bicyclo[2.1.1]hexan-1-ols. Journal of Organic Chemistry, 2015, 80, 52-61.	3.2	18
31	One-pot synthesis of thiazino[2,3,4-hi]indole derivatives through a tandem oxidative coupling/heteroannulation process. Chemical Communications, 2017, 53, 4718-4721.	4.1	18
32	Aminoâ€Induced 2D Cuâ€Based Metal–Organic Framework as an Efficient Heterogeneous Catalyst for Aerobic Oxidation of Olefins. Chemistry - A European Journal, 2020, 26, 4333-4340.	3.3	18
33	Study on the coupling of acyclic esters with alkenes – the synthesis of 2-(2-hydroxyalkyl)cyclopropanols via cascade cyclization using allylsamarium bromide. Chemical Communications, 2012, 48, 11026.	4.1	17
34	Synthesis of chroman-4-one and indanone derivatives via silver catalyzed radical ring opening/coupling/cyclization cascade. Tetrahedron, 2019, 75, 130490.	1.9	17
35	Metalâ€Free Direct C–H βâ€Carbonyl Alkylation of Heteroarenes with Cyclopropanols Mediated by K ₂ S ₂ O ₈ . European Journal of Organic Chemistry, 2020, 2020, 2600-2604.	2.4	17
36	Construction of 3-aryl-1,2,4-benzotriazines via unprecedented rearrangement of bis(benzotriazol-1-yl)methylarenes. Tetrahedron Letters, 2010, 51, 6763-6766.	1.4	16

#	Article	IF	CITATIONS
37	Substitution of the Benzotriazolyl Group inN-(α-Amidoalkyl)benzotriazoles andN-(α-Sulfonamidoalkyl)benzotriazoles with Allylsamarium Bromide. Synthetic Communications, 2003, 33, 3575-3581.	2.1	14
38	Samarium Triiodide–Catalyzed Formation of Mannichâ€Type Products by Amidoalkylation of 1,3â€Dicarbonyl Compounds. Synthetic Communications, 2007, 37, 3751-3758.	2.1	14
39	Elimination of benzotriazolyl group in N-(α-benzotriazol-1-ylalkyl)amides and N-(α-benzotriazol-1-ylalkyl)sulfonamides: their self-coupling and cross-coupling reactions with carbonyl compounds. Tetrahedron, 2003, 59, 8257-8263.	1.9	13
40	Oneâ€Pot Syntheses of Amides from Nâ€Acylation of Nitroarenes with Esters Mediated by Samarium Diiodide. Synthetic Communications, 2004, 34, 3001-3008.	2.1	13
41	Reactivity of AllylSmBr/HMPA: Facile Synthesis of 3â€Arylâ€1,2,4â€benzotriazines. Chinese Journal of Chemistry, 2013, 31, 143-148.	4.9	13
42	Low-Valent Titanium Promoted Self-Coupling of N-Acylbenzotriazoles and Their Cross-Coupling with Diarylketones. Synthetic Communications, 2003, 33, 2627-2634.	2.1	12
43	Efficient Syntheses of β-Amino-N-acylbenzotriazoles and Cinnamides through Regioselective 1,4- or 1,2-Addition of Amines toN-Cinnamoylbenzotriazoles. Synlett, 2005, 2005, 3042-3046.	1.8	12
44	Facile and Highly Regiospecific Synthesis of 2-Aryl-Substituted Pyrazolidin-3-ones from α,β-Unsaturated N-Acylbenzotriazoles and Arylhydrazines. Synthesis, 2008, 2008, 3223-3228.	2.3	12
45	Study of fragmentation pathways of lithiated <i>α</i> , <i>β</i> â€unsaturated thioesters by electrospray ionization mass spectrometry. Rapid Communications in Mass Spectrometry, 2010, 24, 409-414.	1.5	12
46	Efficient domino synthesis of benzimidazole derivatives: copper catalysis versus transition metal-free conditions. Tetrahedron Letters, 2015, 56, 1624-1630.	1.4	12
47	A facile one-pot synthesis of 2- o -cyanoaryl oxazole derivatives mediated by CuCN. Tetrahedron Letters, 2018, 59, 1409-1413.	1.4	12
48	A Facile Synthesis of Acylhydrazines from Acylbenzotriazoles. Journal of Chemical Research, 2005, 2005, 595-597.	1.3	11
49	Alternative Sm(II) Species-Mediated Cascade Coupling/Cyclization for the Synthesis of Oxobicyclo[3.1.0]hexane-1-ols. Organic Letters, 2018, 20, 530-533.	4.6	11
50	Metal-free synthesis of phosphinoylchroman-4-ones via a radical phosphinoylation–cyclization cascade mediated by K ₂ S ₂ O ₈ . Beilstein Journal of Organic Chemistry, 2020, 16, 1974-1982.	2.2	11
51	Sml ₂ -mediated reductive cyclization of β-arylthio ketones: a facile and diastereoselective synthesis of thiochroman derivatives. Organic and Biomolecular Chemistry, 2017, 15, 6157-6166.	2.8	10
52	One-Pot Synthesis of 4-Sulfonyliminotetrahydropyrimidin-2-one Derivatives through a Copper-Catalyzed Tandem Reaction. Journal of Organic Chemistry, 2018, 83, 15533-15540.	3.2	10
53	Electrochemical one-pot synthesis of five-membered azaheterocycles <i>via</i> [4 + 1] cyclization. Organic Chemistry Frontiers, 2020, 7, 3912-3917.	4.5	10
54	An Efficient Synthesis of Î \pm ,Î ² -Unsaturated Thiol Esters. Journal of Chemical Research, 2006, 2006, 64-66.	1.3	9

#	Article	IF	CITATIONS
55	Three-dimensional organic cage with aggregation-induced delayed fluorescence. Chinese Chemical Letters, 2021, 32, 1017-1019.	9.0	9
56	Chemoselective Removal of Acyloxy in 1-(Benzotriazole-1-yl)alkyl Esters and Its Application in the Preparation of β-(Benzotriazole-1-yl)alcohols. Synthetic Communications, 2008, 38, 2908-2918.	2.1	8
57	FeCl3·Â6H2O-Catalyzed Acceleration of the Acylation of Sodium Azide withN-Acylbenzotriazoles. Synthetic Communications, 2011, 41, 2461-2467.	2.1	8
58	Azoâ€Functionalized Zirconiumâ€Based Metalâ^'Organic Polyhedron as an Efficient Catalyst for CO ₂ Fixation with Epoxides. Chemistry - A European Journal, 2021, 27, 12890-12899.	3.3	8
59	Reactions of Aroyl Chlorides with Samarium Metal in DMF—Controllable Syntheses of Oâ€Aroylbenzoins, 1,2â€Diarylethanones, and (Z)â€Î±,α′â€Stilbenediol Dibenzoates. Synthetic Communicatio 2004, 34, 4009-4022.	n 2,1	7
60	Substitution of Acyl for Acetyl with Nâ€Acylbenzotriazoles Catalyzed by Samarium Triiodide. Synthetic Communications, 2007, 37, 1617-1625.	2.1	7
61	MeOH or H 2 O as efficient additive to switch the reactivity of allylSmBr towards carbonyl compounds. Tetrahedron Letters, 2017, 58, 1250-1253.	1.4	7
62	Diastereoselective synthesis of cis-1,2-disubstituted cyclopropanols and cyclopent-3-enols via Sml2 mediated C–N(Bt) bond cleavage. Tetrahedron Letters, 2015, 56, 3982-3987.	1.4	6
63	SAMARIUM DIIODIDE MEDIATED REDUCTIVE COUPLING OF 2-NITRO-1,3-DIPHENYL-2-PROPEN- 1-ONE: SYNTHESIS OF QUINOLINES. Synthetic Communications, 2002, 32, 3617-3620.	2.1	5
64	SmI3-Catalyzed Addition of Amines to α,β-Unsaturated N-Acylbenzotriazoles. Synthetic Communications, 2009, 39, 819-829.	2.1	5
65	Highly selective gas-phase synthesis of 1,1-dichloroethylene from 1,1,2-trichloroethane over supported amine catalysts. Chemical Research in Chinese Universities, 2015, 31, 787-791.	2.6	5
66	Additive Tuned Selective Synthesis of Bicyclo[3.3.0]octan-1-ols and Bicyclo[3.1.0]hexan-1-ols Mediated by AllylSmBr. Journal of Organic Chemistry, 2018, 83, 8984-8994.	3.2	5
67	Regioselective single-step synthesis of 2-aminoimidazole derivatives. Tetrahedron Letters, 2019, 60, 151122.	1.4	5
68	Catalytic Conjugate Addition of Indoles to 4-Aryl-4-oxobut-2-enoates by FeCl3. Chemistry Letters, 2008, 37, 1284-1285.	1.3	4
69	Synthesis, DNA-binding and antiproliferative activity of N-(Nitrogen heterocyclic) norcantharidin acylamide acid. Open Chemistry, 2009, 7, 569-575.	1.9	4
70	Synthesis, Antiproliferative Activity and DNA-Binding Properties of Nitrogen and Sulfur Heterocyclic Norcantharidin Acylamide Acid. Chinese Journal of Chemistry, 2011, 29, 473-477.	4.9	4
71	Preparation of 2-heteroatom substituted 4-oxo-4-arylbutanoates via thio- and aza-Michael addition. Journal of the Serbian Chemical Society, 2012, 77, 581-588.	0.8	4
72	[M(Me6Tren)X]X complex as efficacious bifunctional catalyst for CO2 cycloaddition: The synergism of the metal and halogen ions. Journal of CO2 Utilization, 2022, 61, 102048.	6.8	4

#	Article	IF	CITATIONS
73	Sml2-mediated facile syntheses of N-(2,2-dichlorovinyl)amides from acetates of chloralamide. Journal of Chemical Research, 2004, 2004, 738-739.	1.3	3
74	Direct and Highly Efficient Synthesis of (Z)-Allyl Iodides from Baylis-Hillman Adducts Promoted by TMSCl/Nal System. Synlett, 2005, 2005, 1039-1041.	1.8	3
75	Reductive Cross-Coupling between <i>N</i> -Acylbenzimidazoles and Diarylketones Promoted by Sm/TiCl ₄ . Journal of Chemical Research, 2007, 2007, 14-15.	1.3	3
76	Investigation on the Se-Acylation with <i>N</i> -Acylbenzotriazoles. Phosphorus, Sulfur and Silicon and the Related Elements, 2011, 186, 2047-2054.	1.6	3
77	Study on the total synthesis of velbanamine: Chemoselective dioxygenation of alkenes with PIFA via a stop-and-flow strategy. Beilstein Journal of Organic Chemistry, 2013, 9, 983-990.	2.2	3
78	Copper-catalyzed one-pot synthesis of 2H-1,4-benzoxazin-3-(4H)-ones from 2-(o-haloaryloxy)acyl chlorides and primary amines. Arkivoc, 2012, 2012, 129-142.	0.5	3
79	Preparation of Manganese Oxide Octahedral Molecular Sieve and Catalytic Activity of Its Supported PdO for CO Oxidation. Chinese Journal of Catalysis, 2010, 31, 181-185.	14.0	3
80	A facile electrosynthesis of N-acyl benzotriazoles from aldehydes and benzotriazole. Tetrahedron Letters, 2022, 101, 153904.	1.4	3
81	Synthesis of 3-Indolylarylmethanamides by Samarium Triiodide Catalyzed Friedel-Crafts Amidoalkylation. Synthesis, 2008, 2008, 2582-2588.	2.3	2
82	Selective substitution reactions of methoxycarbonylaminoâ€1â€(1â€benzotriazolyl)alkanes with active methylene compounds. Journal of Heterocyclic Chemistry, 2011, 48, 434-440.	2.6	2
83	Facile and efficient conjugate additions of β-dicarbonyl compounds and nitroalkanes to 4-aryl-4-oxobut-2-enoates. Journal of the Serbian Chemical Society, 2011, 76, 947-954.	0.8	2
84	Samarium diiodide promoted one-pot syntheses of amides from azides and esters. Journal of Chemical Research, 2004, 2004, 484-485.	1.3	1
85	Trapping of Isocyanates with Benzotriazole in situ - Preparation of Carbamoyl Benzotriazoles as an Isocyanate Alternative via Curtius Rearrangement. Synlett, 2009, 2009, 2461-2464.	1.8	1
86	Curvature, vacancy size and chirality effects of mono- to octa-vacancies in zigzag single-walled carbon nanotubes. New Journal of Chemistry, 2016, 40, 8625-8631.	2.8	1
87	Facile pinacol coupling of aliphatic ketones by Brook rearrangement in the presence of samarium species. Tetrahedron Letters, 2021, 72, 153069.	1.4	1
88	[1+1] and [2+1] Additions on a (5,5) Single-Walled Carbon Nanotube with V ₁ ~V ₄ Vacancies Based on Defect Curvature: A First Principles Study. Acta Chimica Sinica, 2017, 75, 284.	1.4	1
89	An Improved Synthesis of DOPO-POSS. Organic Preparations and Procedures International, 2022, 54, 380-385.	1.3	1
90	Samarium Diiodide Mediated Reductive Coupling of 2-Nitro-1,3-diphenyl-2-propen-1-one: Synthesis of Quinolines ChemInform, 2003, 34, no.	0.0	0

#	Article	IF	CITATIONS
91	Samarium Diiodide Promoted Formation of 1,2-Diketones and 1-Acylamido-2-substituted Benzimidazoles from N-Acylbenzotriazoles ChemInform, 2003, 34, no.	0.0	0
92	Low-Valent Titanium Promoted Self-Coupling of N-Acylbenzotriazoles and Their Cross-Coupling with Diarylketones ChemInform, 2003, 34, no.	0.0	0
93	Substitution of the Benzotriazolyl Group in N-(α-Amidoalkyl)benzotriazoles and N-(α-Sulfonamidoalkyl)benzotriazoles with Allylsamarium Bromide ChemInform, 2004, 35, no.	0.0	0
94	Elimination of Benzotriazolyl Group in N-(α-Benzotriazol-1-ylalkyl)amides and N-(α-Benzotriazol-1-ylalkyl)sulfonamides: Their Self-Coupling and Cross-Coupling Reactions with Carbonyl Compounds ChemInform, 2004, 35, no.	0.0	0
95	One-Pot Syntheses of Amides from N-Acylation of Nitroarenes with Esters Mediated by Samarium Diiodide ChemInform, 2005, 36, no.	0.0	0
96	Reactions of Aroyl Chlorides with Samarium Metal in DMF?Controllable Syntheses of O-Aroylbenzoins, 1,2-Diarylethanones, and (Z)-?,??-Stilbenediol Dibenzoates ChemInform, 2005, 36, no.	0.0	0
97	Remarkable Rate Acceleration of Water-Promoted Nucleophilic Substitution of Baylis—Hillman Acetate: A Facile and Highly Efficient Synthesis of N-Substituted Imidazole ChemInform, 2005, 36, no.	0.0	0
98	Samarium Diiodide Promoted One-Pot Syntheses of Amides from Azides and Esters ChemInform, 2006, 37, no.	0.0	0
99	A Facile Synthesis of Acylhydrazines from Acylbenzotriazoles ChemInform, 2006, 37, no.	0.0	0
100	Highly Stable CsNO ₃ /SiO ₂ Catalysts for the Synthesis of Vinylidene Chloride Using a Gaseous Phase Method. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2016, 32, 510-518.	4.9	0
101	One-pot preparation of carbamoyl benzotriazoles and their applications in the preparation of ureas, hydrazinecarboxamides and carbamic esters. Journal of the Serbian Chemical Society, 2016, 81, 13-22.	0.8	0