Anton Umek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4506237/publications.pdf Version: 2024-02-01

ANTON LIMER

#	Article	IF	CITATIONS
1	Validation of UWB positioning systems for player tracking in tennis. Personal and Ubiquitous Computing, 2022, 26, 1023-1033.	1.9	4
2	Review of Real-Time Biomechanical Feedback Systems in Sport and Rehabilitation. Sensors, 2022, 22, 3006.	2.1	16
3	Grip Force Measurement System in Climbing. Procedia Computer Science, 2022, 202, 367-372.	1.2	0
4	Development of a platform for sensor systems support in sport. Procedia Computer Science, 2022, 202, 360-366.	1.2	2
5	The role of technology for accelerated motor learning in sport. Personal and Ubiquitous Computing, 2021, 25, 969-978.	1.9	13
6	Sensor Based Agility Assessment in Sport. Procedia Computer Science, 2021, 187, 440-446.	1.2	3
7	Validation of MEMS Accelerometer for Rapid Hand Movement Measurement. Procedia Computer Science, 2021, 187, 530-537.	1.2	0
8	Guest Editorial Introduction to the Special Section on Artificial Intelligence For Social Networks. IEEE Transactions on Network Science and Engineering, 2021, 8, 826-827.	4.1	0
9	Use of IMU in Differential Analysis of the Reverse Punch Temporal Structure in Relation to the Achieved Maximal Hand Velocity. Sensors, 2021, 21, 4148.	2.1	5
10	Metrical characteristics and the reliability of kinematic sensor devices applied in different modalities of reverse punch in karate athletes. Measurement: Journal of the International Measurement Confederation, 2021, 177, 109315.	2.5	6
11	Can IMU Provide an Accurate Vertical Jump Height Estimate?. Applied Sciences (Switzerland), 2021, 11, 12025.	1.3	8
12	The relationship of pistol movement measured by a kinematic sensor, shooting performance and handgrip strength. International Journal of Performance Analysis in Sport, 2020, 20, 1107-1119.	0.5	3
13	Reliable Communication Protocol for Coach Based Augmented Biofeedback Applications in Swimming. Procedia Computer Science, 2020, 174, 351-357.	1.2	2
14	eQuilibrium: A Prototype of a Sensor-Based Balance Training and Monitoring System. Procedia Computer Science, 2020, 174, 340-346.	1.2	2
15	Machine Learning based Accuracy Prediction Model for Augmented Biofeedback in Precision Shooting. Procedia Computer Science, 2020, 174, 358-363.	1.2	1
16	Sensor system for augmented feedback applications in volleyball. Procedia Computer Science, 2020, 174, 369-374.	1.2	4
17	Potential of IMU-Based Systems in Measuring Single Rapid Movement Variables in Females with Different Training Backgrounds and Specialization. Applied Bionics and Biomechanics, 2020, 2020, 1-7.	0.5	10
18	A Random Forest-Based Accuracy Prediction Model for Augmented Biofeedback in a Precision Shooting Training System. Sensors, 2020, 20, 4512.	2.1	1

ΑΝΤΟΝ **U**MEK

#	Article	IF	CITATIONS
19	Sport Biomechanics Applications Using Inertial, Force, and EMG Sensors: A Literature Overview. Applied Bionics and Biomechanics, 2020, 2020, 1-18.	0.5	60
20	Correctness of the Chord protocol. Computer Science and Information Systems, 2020, 17, 141-160.	0.7	1
21	Wearable Sensor Devices for Prevention and Rehabilitation in Healthcare: Swimming Exercise With Real-Time Therapist Feedback. IEEE Internet of Things Journal, 2019, 6, 1331-1341.	5.5	67
22	Sensor System for Precision Shooting Evaluation and Real-time Biofeedback. Procedia Computer Science, 2019, 147, 319-323.	1.2	8
23	Application for Impact Position Evaluation in Tennis Using UWB Localization. Procedia Computer Science, 2019, 147, 307-313.	1.2	8
24	Approaching the Communication Constraints of Ethereum-Based Decentralized Applications. Sensors, 2019, 19, 2647.	2.1	14
25	Challenges in wireless communication for connected sensors and wearable devices used in sport biofeedback applications. Future Generation Computer Systems, 2019, 92, 582-592.	4.9	60
26	Mathematical model of short distance pistol shooting performance in experienced shooters of both gender. Nauka Bezbednost Policija, 2019, 24, 3-13.	0.5	3
27	The role of science and technology in sport. Procedia Computer Science, 2018, 129, 489-495.	1.2	15
28	Wearable sensors and smart equipment for feedback in watersports. Procedia Computer Science, 2018, 129, 496-502.	1.2	24
29	Multi-sensor Golf Swing Classification Using Deep CNN. Procedia Computer Science, 2018, 129, 59-65.	1.2	23
30	Smart sport equipment: SmartSki prototype for biofeedback applications in skiing. Personal and Ubiquitous Computing, 2018, 22, 535-544.	1.9	31
31	Towards Real-Time Multi-Sensor Golf Swing Classification Using Deep CNNs. Journal of Database Management, 2018, 29, 17-42.	1.0	12
32	Sensor selection scheme in activity recognition based on hierarchical feature reduction. International Journal of Distributed Sensor Networks, 2018, 14, 155014771879380.	1.3	2
33	Strain Gage Sensor Based Golfer Identification Using Machine Learning Algorithms. Procedia Computer Science, 2018, 129, 135-140.	1.2	4
34	Hierarchical Feature Reduction with Max Relevance and Low Dimensional Embedding Strategy and Its Application in Activity Recognition with Multi-sensors. Procedia Computer Science, 2018, 129, 284-290.	1.2	2
35	Biofeedback Systems in Sport and Rehabilitation. Human-computer Interaction Series, 2018, , 61-79.	0.4	0
36	Biomechanical Biofeedback Systems and Applications. Human-computer Interaction Series, 2018, , .	0.4	11

ΑΝΤΟΝ **U**MEK

#	Article	IF	CITATIONS
37	Performance Limitations of Biofeedback System Technologies. Human-computer Interaction Series, 2018, , 81-116.	0.4	2
38	Biomechanical Biofeedback. Human-computer Interaction Series, 2018, , 25-38.	0.4	3
39	Golf swing classification with multiple deep convolutional neural networks. International Journal of Distributed Sensor Networks, 2018, 14, 155014771880218.	1.3	16
40	SMART EQUIPMENT DESIGN CHALLENGES FOR REAL TIME FEEDBACK SUPPORT IN SPORT. Facta Universitatis, Series: Mechanical Engineering, 2018, 16, 389.	2.3	11
41	Biofeedback System. Human-computer Interaction Series, 2018, , 39-47.	0.4	0
42	Biofeedback System Architectures. Human-computer Interaction Series, 2018, , 49-59.	0.4	0
43	Suitability of Strain Gage Sensors for Integration into Smart Sport Equipment: A Golf Club Example. Sensors, 2017, 17, 916.	2.1	24
44	COMPUTERIZED RADIAL ARTERY PULSE SIGNAL CLASSIFICATION FOR LUNG CANCER DETECTION. Facta Universitatis, Series: Mechanical Engineering, 2017, 15, 535.	2.3	1
45	Evaluation of Smartphone Inertial Sensor Performance for Cross-Platform Mobile Applications. Sensors, 2016, 16, 477.	2.1	51
46	The Role of High Performance Computing and Communication for Real-Time Biofeedback in Sport. Mathematical Problems in Engineering, 2016, 2016, 1-11.	0.6	19
47	Suitability of Smartphone Inertial Sensors for Real-Time Biofeedback Applications. Sensors, 2016, 16, 301.	2.1	43
48	Validation of smartphone gyroscopes for mobile biofeedback applications. Personal and Ubiquitous Computing, 2016, 20, 657-666.	1.9	23
49	SmartSKI: Application of Sensors Integrated into Sport Equipment. , 2016, , .		0
50	Identification and Selection of Sensors Suitable for Integration into Sport Equipment: Smart Golf Club. , 2016, , .		6
51	Correctness of the Chord Protocol. , 2016, , .		0
52	Comparison of Smartphone Sensors Performance Using Participatory Sensing and Cloud Application. , 2015, , .		0
53	Validation of Smartphone Gyroscopes for Angular Tracking in Biofeedback Applications. , 2015, , .		1
54	Wearable training system with real-time biofeedback and gesture user interface. Personal and Ubiquitous Computing, 2015, 19, 989-998.	1.9	36

#	Article	IF	CITATIONS
55	Biofeedback in sport: Challenges in real-time motion tracking and processing. , 2015, , .		5
56	Autonomous Wearable Personal Training System with Real-Time Biofeedback and Gesture User Interface. , 2014, , .		5
57	A simple formula for calculation of power loss in digital transmission lines. IEEE Transactions on Communications, 1992, 40, 484-486.	4.9	2