Derek C Molliver

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4505481/publications.pdf

Version: 2024-02-01

36 4,215 26 34 papers citations h-index g-index

36 36 3992 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	IB4-Binding DRG Neurons Switch from NGF to GDNF Dependence in Early Postnatal Life. Neuron, 1997, 19, 849-861.	8.1	662
2	Production of dissociated sensory neuron cultures and considerations for their use in studying neuronal function and plasticity. Nature Protocols, 2007, 2, 152-160.	12.0	364
3	Gene Targeting Reveals a Critical Role for Neurturin in the Development and Maintenance of Enteric, Sensory, and Parasympathetic Neurons. Neuron, 1999, 22, 253-263.	8.1	303
4	Presence or absence of TrKA protein distinguishes subsets of small sensory neurons with unique cytochemical characteristics and dorsal horn projections. Journal of Comparative Neurology, 1995, 361, 404-416.	1.6	255
5	Glial Cell Line-Derived Neurotrophic Factor Family Members Sensitize Nociceptors In Vitro and Produce Thermal Hyperalgesia In Vivo. Journal of Neuroscience, 2006, 26, 8588-8599.	3.6	230
6	Neurotoxicity of MDMA and Related Compounds: Anatomic Studies. Annals of the New York Academy of Sciences, 1990, 600, 640-661.	3.8	229
7	Role of Phosphoinositide 3-Kinase and Endocytosis in Nerve Growth Factor-Induced Extracellular Signal-Regulated Kinase Activation via Ras and Rap1. Molecular and Cellular Biology, 2000, 20, 8069-8083.	2.3	221
8	ASIC3, an Acid-Sensing Ion Channel, is Expressed in Metaboreceptive Sensory Neurons. Molecular Pain, 2005, 1, 1744-8069-1-35.	2.1	201
9	Artemin Overexpression in Skin Enhances Expression of TRPV1 and TRPA1 in Cutaneous Sensory Neurons and Leads to Behavioral Sensitivity to Heat and Cold. Journal of Neuroscience, 2006, 26, 8578-8587.	3.6	155
10	Synchronous Onset of NGF and TrkA Survival Dependence in Developing Dorsal Root Ganglia. Journal of Neuroscience, 1996, 16, 4662-4672.	3.6	154
11	Non-TrkA-expressing small DRG neurons are lost in TrkA deficient mice. Journal of Neuroscience, 1995, 15, 5929-5942.	3.6	150
12	Nerve growth factor receptor trkA is down-regulated during postnatal development by a subset of dorsal root ganglion neurons. Journal of Comparative Neurology, 1997, 381, 428-438.	1.6	145
13	TRPV1 and TRPA1 Function and Modulation Are Target Tissue Dependent. Journal of Neuroscience, 2011, 31, 10516-10528.	3.6	132
14	Anatomic evidence for a neurotoxic effect of (\hat{A}_{\pm}) -fenfluramine upon serotonergic projections in the rat. Brain Research, 1990, 511, 165-168.	2.2	120
15	Analysis of the Retrograde Transport of Glial Cell Line-Derived Neurotrophic Factor (GDNF), Neurturin, and Persephin Suggests That <i>In Vivo</i> Signaling for the GDNF Family is GFRI± Coreceptor-Specific. Journal of Neuroscience, 1999, 19, 9322-9331.	3.6	112
16	Gi- and Gq-Coupled ADP (P2Y) Receptors Act in Opposition to Modulate Nociceptive Signaling and Inflammatory Pain Behavior. Molecular Pain, 2010, 6, 1744-8069-6-21.	2.1	110
17	ATP and UTP excite sensory neurons and induce CREB phosphorylation through the metabotropic receptor, P2Y2. European Journal of Neuroscience, 2002, 16, 1850-1860.	2.6	101
18	Thermal nociception and TRPV1 function are attenuated in mice lacking the nucleotide receptor P2Y2. Pain, 2008, 138, 484-496.	4.2	79

#	Article	IF	CITATIONS
19	Nucleotide signaling and cutaneous mechanisms of pain transduction. Brain Research Reviews, 2009, 60, 24-35.	9.0	68
20	The P2Y agonist UTP activates cutaneous afferent fibers. Pain, 2004, 109, 36-44.	4.2	66
21	In Search of Analgesia: Emerging Poles of GPCRs in Pain. Molecular Interventions: Pharmacological Perspectives From Biology, Chemistry and Genomics, 2009, 9, 234-251.	3.4	59
22	Purinergic receptor P2Y1 regulates polymodal C-fiber thermal thresholds and sensory neuron phenotypic switching during peripheral inflammation. Pain, 2012, 153, 410-419.	4.2	47
23	Overexpression of NGF or GDNF alters transcriptional plasticity evoked by inflammation. Pain, 2005, 113, 277-284.	4.2	41
24	The P2Y2 Receptor Sensitizes Mouse Bladder Sensory Neurons and Facilitates Purinergic Currents. Journal of Neuroscience, 2010, 30, 2365-2372.	3.6	36
25	Phenotypic Switching of Nonpeptidergic Cutaneous Sensory Neurons following Peripheral Nerve Injury. PLoS ONE, 2011, 6, e28908.	2,5	34
26	Transgenic mice possessing increased numbers of nociceptors do not exhibit increased behavioral sensitivity in models of inflammatory and neuropathic pain. Pain, 2003, 106, 491-500.	4.2	28
27	Distribution of ecto-nucleotidases in mouse sensory circuits suggests roles for nucleoside triphosphate diphosphohydrolase-3 in nociception and mechanoreception. Neuroscience, 2011, 193, 387-398.	2.3	27
28	The ADP Receptor P2Y1 is Necessary for Normal Thermal Sensitivity in Cutaneous Polymodal Nociceptors. Molecular Pain, 2011, 7, 1744-8069-7-13.	2.1	24
29	Neurturin Overexpression in Skin Enhances Expression of TRPM8 in Cutaneous Sensory Neurons and Leads to Behavioral Sensitivity to Cool and Menthol. Journal of Neuroscience, 2013, 33, 2060-2070.	3.6	23
30	Role of Phosphoinositide 3-Kinase and Endocytosis in Nerve Growth Factor-Induced Extracellular Signal-Regulated Kinase Activation via Ras and Rap1. Molecular and Cellular Biology, 2000, 20, 8069-8083.	2.3	15
31	Regulation of Mitochondrial Function by Epac2 Contributes to Acute Inflammatory Hyperalgesia. Journal of Neuroscience, 2021, 41, 2883-2898.	3.6	10
32	Deletion of the murine ATP/UTP receptor P2Y2 alters mechanical and thermal response properties in polymodal cutaneous afferents. Neuroscience, 2016, 332, 223-230.	2.3	7
33	A Novel Mechanism for Zika Virus Host-Cell Binding. Viruses, 2019, 11, 1101.	3. 3	4
34	Phospho-substrate profiling of Epac-dependent protein kinase C activity. Molecular and Cellular Biochemistry, 2019, 456, 167-178.	3.1	3
35	A8-A17 Cell Groups (Dopaminergic Cell Groups). , 2008, , 2-2.		0
36	Distribution of nucleotidase activity suggests a key role for NTPDase3 in nociceptive purinergic signaling. Journal of Pain, 2011, 12, P43.	1.4	0