Igor Wojnicki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4505368/publications.pdf

Version: 2024-02-01

933264 839398 36 330 10 18 citations g-index h-index papers 37 37 37 270 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Advanced street lighting control. Expert Systems With Applications, 2014, 41, 999-1005.	4.4	42
2	The externalities of energy production in the context of development of clean energy generation. Environmental Science and Pollution Research, 2020, 27, 11506-11530.	2.7	42
3	Economic Impact of Intelligent Dynamic Control in Urban Outdoor Lighting. Energies, 2016, 9, 314.	1.6	28
4	INSIGMA: an intelligent transportation system for urban mobility enhancement. Multimedia Tools and Applications, 2016, 75, 10529-10560.	2.6	28
5	Empirical Study of How Traffic Intensity Detector Parameters Influence Dynamic Street Lighting Energy Consumption: A Case Study in Krakow, Poland. Sustainability, 2018, 10, 1221.	1.6	23
6	Improving Control Efficiency of Dynamic Street Lighting by Utilizing the Dual Graph Grammar Concept. Energies, 2018, 11, 402.	1.6	23
7	Application of distributed graph transformations to automated generation of control patterns for intelligent lighting systems. Journal of Computational Science, 2017, 23, 20-30.	1.5	20
8	Comparative Study of Road Lighting Efficiency in the Context of CEN/TR 13201 2004 and 2014 Lighting Standards and Dynamic Control. Energies, 2019, 12, 1524.	1.6	20
9	Concentrated Solar Power Plants with Molten Salt Storage: Economic Aspects and Perspectives in the European Union. International Journal of Photoenergy, 2019, 2019, 1-10.	1.4	14
10	Application of reactive power compensation algorithm for large-scale street lighting. Journal of Computational Science, 2021, 51, 101338.	1.5	12
11	Street Lighting Control, Energy Consumption Optimization. Lecture Notes in Computer Science, 2017, , 357-364.	1.0	10
12	Roadway Lighting Retrofit: Environmental and Economic Impact of Greenhouse Gases Footprint Reduction. Sustainability, 2018, 10, 3925.	1.6	8
13	Tab-Trees: A CASE Tool for the Design of Extended Tabular Systemsâd. Lecture Notes in Computer Science, 2001, , 422-431.	1.0	8
14	Prediction of Traffic Intensity for Dynamic Street Lighting. , 2017, , .		5
15	Lighting System Modernization as a Source of Green Energy. Energies, 2021, 14, 2771.	1.6	5
16	Ontology Oriented Storage, Retrieval and Interpretation for a Dynamic Map System. Communications in Computer and Information Science, 2012, , 380-391.	0.4	5
17	A Robust Planning Algorithm for Groups of Entities in Discrete Spaces. Entropy, 2015, 17, 5422-5436.	1.1	4
18	VARDA Rule Design and Visualization Tool-Chain. Lecture Notes in Computer Science, 0, , 395-396.	1.0	4

#	Article	IF	CITATIONS
19	Hierarchical rule design with HaDEs the HeKatE toolchain. Proceedings of the International Multiconference on Computer Science and Information Technology, 2008, , .	0.0	3
20	A Robust Heuristic for the Multidimensional A-star/Wavefront Hybrid Planning Algorithm. Lecture Notes in Computer Science, 2015, , 282-291.	1.0	3
21	State-Space Reduction through Preference Modeling. Lecture Notes in Computer Science, 2013, , 363-374.	1.0	3
22	Two-level agent environment for intelligent lighting control. International Journal of Materials and Product Technology, 2016, 53, 187.	0.1	2
23	Contribution of the INSIGMA Project to the Field of Intelligent Transportation Systems. Communications in Computer and Information Science, 2014, , 58-72.	0.4	2
24	Application of New ATAM Tools to Evaluation of the Dynamic Map Architecture. Communications in Computer and Information Science, 2013, , 248-261.	0.4	2
25	Implementing General Purpose Applications with the Rule-Based Approach. Lecture Notes in Computer Science, 2011, , 360-367.	1.0	2
26	Separating I/O from Application Logic for Rule-Based Control Systems. Decision Making in Manufacturing and Services, 2013, 5, 79-89.	0.2	2
27	Intelligent Design and Control of Outdoor Lighting, Complexity Issues. Key Engineering Materials, 0, 572, 494-497.	0.4	1
28	Synchronisation methods in graph-based knowledge representation for large-scale design process. International Journal of Design Engineering, 2017, 7, 17.	0.3	1
29	Visual Generalized Rule Programming Model for Prolog with Hybrid Operators. Lecture Notes in Computer Science, 2009, , 178-194.	1.0	1
30	Controlling Complex Lighting Systems. Advances in Intelligent and Soft Computing, 2013, , 305-317.	0.2	1
31	Control Planning for Autonomous Off-Grid Outdoor Lighting Systems Based on Energy Consumption Preferences. Lecture Notes in Computer Science, 2016, , 749-757.	1.0	1
32	Synchronisation methods in graph-based knowledge representation for large-scale design process. International Journal of Design Engineering, 2017, 7, 17.	0.3	1
33	Defining Deviation Sub-spaces for theÂA*W Robust Planning Algorithm. Lecture Notes in Computer Science, 2017, , 392-399.	1.0	0
34	Control Driven Lighting Design for Large-Scale Installations. Lecture Notes in Computer Science, 2018, , 691-700.	1.0	0
35	Smart Lighting Control Architecture and Benefits. Lecture Notes in Computer Science, 2018, , 331-340.	1.0	0
36	Scalability of Dynamic Lighting Control Systems. Smart Innovation, Systems and Technologies, 2019, , $156-163$.	0.5	0