Wei Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4504639/publications.pdf

Version: 2024-02-01

411340 563245 4,479 29 20 28 citations h-index g-index papers 29 29 29 5348 docs citations all docs times ranked citing authors

#	Article	IF	Citations
1	Responsive biomaterials for 3D bioprinting: A review. Materials Today, 2022, 52, 112-132.	8.3	64
2	Advances in 3D Bioprinting. , 2022, 1, 100011.		12
3	Do ACR TI-RADS scores demonstrate unique thyroid molecular profiles?. Ultrasonography, 2022, 41, 480-492.	1.0	2
4	Printability in extrusion bioprinting. Biofabrication, 2021, 13, 033001.	3.7	74
5	Evaluation of Printing Parameters on 3D Extrusion Printing of Pluronic Hydrogels and Machine Learning Guided Parameter Recommendation. International Journal of Bioprinting, 2021, 7, 434.	1.7	27
6	To B (Bone Morphogenic Protein-2) or Not to B (Bone Morphogenic Protein-2): Mesenchymal Stem Cells May Explain the Protein's Role in Osteosarcomagenesis. Frontiers in Cell and Developmental Biology, 2021, 9, 740783.	1.8	2
7	Assessment of various crosslinking agents on collagen/chitosan scaffolds for myocardial tissue engineering. Biomedical Materials (Bristol), 2020, 15, 045003.	1.7	38
8	Bioprinting of <i>in vitro</i> tumor models for personalized cancer treatment: a review. Biofabrication, 2020, 12, 042001.	3.7	61
9	Application of a 3D Bioprinted Hepatocellular Carcinoma Cell Model in Antitumor Drug Research. Frontiers in Oncology, 2020, 10, 878.	1.3	52
10	Bioprinting of patient-derived <i>in vitro</i> intrahepatic cholangiocarcinoma tumor model: establishment, evaluation and anti-cancer drug testing. Biofabrication, 2020, 12, 045014.	3.7	58
11	The bioprinting roadmap. Biofabrication, 2020, 12, 022002.	3.7	291
12	Novel biomimetic fiber incorporated scaffolds for tissue engineering. Journal of Biomedical Materials Research - Part A, 2019, 107, 2694-2705.	2.1	17
13	3D bioprinting of hepatoma cells and application with microfluidics for pharmacodynamic test of Metuzumab. Biofabrication, 2019, 11, 034102.	3.7	40
14	A Novel Controllable Cell Array Printing Technique on Microfluidic Chips. IEEE Transactions on Biomedical Engineering, 2019, 66, 2512-2520.	2.5	15
15	Modeling on Microdroplet Formation for Cell Printing Based on Alternating Viscous-Inertial Force Jetting. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2017, 139, .	1.3	10
16	A Generalizable Strategy for the 3D Bioprinting of Hydrogels from Nonviscous Photo rosslinkable Inks. Advanced Materials, 2017, 29, 1604983.	11.1	414
17	Evaluating fabrication feasibility and biomedical application potential of in situ 3D printing technology. Rapid Prototyping Journal, 2016, 22, 947-955.	1.6	20
18	Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells. Biofabrication, 2016, 8, 035020.	3.7	652

#	Article	IF	CITATION
19	3D Printing of Shear-Thinning Hyaluronic Acid Hydrogels with Secondary Cross-Linking. ACS Biomaterials Science and Engineering, 2016, 2, 1743-1751.	2.6	473
20	Alternating Force Based Drop-on-Demand Microdroplet Formation and Three-Dimensional Deposition. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2015, 137, .	1.3	7
21	Maskless fabrication of cell-laden microfluidic chips with localized surface functionalization for the co-culture of cancer cells. Biofabrication, 2015, 7, 015012.	3.7	32
22	The influence of printing parameters on cell survival rate and printability in microextrusion-based 3D cell printing technology. Biofabrication, 2015, 7, 045002.	3.7	240
23	Three-dimensional <i>in vitro</i> cancer models: a short review. Biofabrication, 2014, 6, 022001.	3.7	150
24	Three-dimensional printing of Hela cells for cervical tumor model <i>in vitro</i> . Biofabrication, 2014, 6, 035001.	3.7	413
25	Fabrication of Biomimetic Scaffolds with Oriented Porous Morphology for Cardiac Tissue Engineering. Journal of Biomaterials and Tissue Engineering, 2014, 4, 1030-1039.	0.0	11
26	Bioprinting Endothelial Cells With Alginate for 3D Tissue Constructs. Journal of Biomechanical Engineering, 2009, 131, 111002.	0.6	271
27	Characterization of cell viability during bioprinting processes. Biotechnology Journal, 2009, 4, 1168-1177.	1.8	408
28	Effects of Dispensing Pressure and Nozzle Diameter on Cell Survival from Solid Freeform Fabrication–Based Direct Cell Writing. Tissue Engineering - Part A, 2008, 14, 41-48.	1.6	428
29	Biopolymer deposition for freeform fabrication of hydrogel tissue constructs. Materials Science and Engineering C, 2007, 27, 469-478.	3.8	197