Daniel Rojas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4504382/publications.pdf

Version: 2024-02-01

840776 888059 20 472 11 17 citations h-index g-index papers 21 21 21 469 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	"Shoot and Senseâ€Janus Micromotors-Based Strategy for the Simultaneous Degradation and Detection of Persistent Organic Pollutants in Food and Biological Samples. Analytical Chemistry, 2016, 88, 4153-4160.	6.5	95
2	Electrochemical Sensing Directions for Next-Generation Healthcare: Trends, Challenges, and Frontiers. Analytical Chemistry, 2021, 93, 167-183.	6.5	68
3	Electrodeposited Prussian Blue on carbon black modified disposable electrodes for direct enzyme-free H2O2 sensing in a Parkinson's disease in vitro model. Sensors and Actuators B: Chemical, 2018, 275, 402-408.	7.8	43
4	High-performance carbon black/molybdenum disulfide nanohybrid sensor for cocoa catechins determination using an extraction-free approach. Sensors and Actuators B: Chemical, 2019, 296, 126651.	7.8	41
5	Class-selective voltammetric determination of hydroxycinnamic acids structural analogs using a WS2/catechin-capped AuNPs/carbon black–based nanocomposite sensor. Mikrochimica Acta, 2020, 187, 296.	5.0	36
6	Nanohybrid carbon black-molybdenum disulfide transducers for preconcentration-free voltammetric detection of the olive oil o-diphenols hydroxytyrosol and oleuropein. Mikrochimica Acta, 2019, 186, 363.	5.0	32
7	Group VI transition metal dichalcogenides as antifouling transducers for electrochemical oxidation of catechol-containing structures. Electrochemistry Communications, 2020, 115, 106718.	4.7	26
8	Oxidative stress on-chip: Prussian blue-based electrode array for in situ detection of H2O2 from cell populations. Biosensors and Bioelectronics, 2020, 170, 112669.	10.1	24
9	Antioxidant and Antibacterial Properties of Carbosilane Dendrimers Functionalized with Polyphenolic Moieties. Pharmaceutics, 2020, 12, 698.	4.5	19
10	Rapid and cost-effective benchtop microfabrication of disposable carbon-based electrochemical microfluidic devices. Sensors and Actuators B: Chemical, 2020, 324, 128679.	7.8	17
11	Xurography-Enabled Thermally Transferred Carbon Nanomaterial-Based Electrochemical Sensors on Polyethylene Terephthalate–Ethylene Vinyl Acetate Films. Analytical Chemistry, 2020, 92, 13565-13572.	6.5	16
12	Microchip in situ electrosynthesis of silver metallic oxide clusters for ultra-FAST detection of galactose in galactosemic newborns' urine samples. Analyst, The, 2016, 141, 6002-6007.	3.5	11
13	Metal nanoparticles based lab-on-paper for phenolic compounds evaluation with no sample pretreatment. Application to extra virgin olive oil samples. Analytica Chimica Acta, 2021, 1183, 338971.	5.4	10
14	Photo-Responsive Doped 3D-Printed Copper Electrodes for Water Splitting: Refractory One-Pot Doping Dramatically Enhances the Performance. Journal of Physical Chemistry C, 2022, 126, 9016-9026.	3.1	10
15	(+)-Catechin-assisted graphene production by sonochemical exfoliation in water. A new redox-active nanomaterial for electromediated sensing. Mikrochimica Acta, 2021, 188, 369.	5.0	9
16	New trends in enzyme-free electrochemical sensing of ROS/RNS.ÂApplication to live cell analysis. Mikrochimica Acta, 2022, 189, 102.	5.0	9
17	Faceted Crystal Nanoarchitectonics of Organic–Inorganic 3D-Printed Visible-Light Photocatalysts. ACS Applied Energy Materials, 2022, 5, 3252-3258.	5.1	6
18	Correction: Microchip <i>in situ</i> electrosynthesis of silver metallic oxide clusters for ultra-FAST detection of galactose in galactosemic newborns' urine samples. Analyst, The, 2017, 142, 3758-3758.	3.5	0

#	Article	IF	CITATIONS
19	Carbon Black as Electrode Modifier in Prussian Blue Electrodeposition for H2O2 Sensing. Lecture Notes in Electrical Engineering, 2019, , 345-350.	0.4	O
20	Graphene Nanoflakes Incorporating Natural Phytochemicals Containing Catechols as Functional Material for Sensors. , 2021, 5, .		0