Marina R Picciotto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4504193/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Acetylcholine receptors containing the \hat{I}^22 subunit are involved in the reinforcing properties of nicotine. Nature, 1998, 391, 173-177.	13.7	1,239
2	Acetylcholine as a Neuromodulator: Cholinergic Signaling Shapes Nervous System Function and Behavior. Neuron, 2012, 76, 116-129.	3.8	944
3	Ghrelin modulates the activity and synaptic input organization of midbrain dopamine neurons while promoting appetite. Journal of Clinical Investigation, 2006, 116, 3229-3239.	3.9	836
4	Guidelines on nicotine dose selection for in vivo research. Psychopharmacology, 2007, 190, 269-319.	1.5	694
5	Abnormal avoidance learning in mice lacking functional high-affinity nicotine receptor in the brain. Nature, 1995, 374, 65-67.	13.7	612
6	Expression of the transcription factor ΔFosB in the brain controls sensitivity to cocaine. Nature, 1999, 401, 272-276.	13.7	591
7	It is not "either/or†Activation and desensitization of nicotinic acetylcholine receptors both contribute to behaviors related to nicotine addiction and mood. Progress in Neurobiology, 2008, 84, 329-342.	2.8	406
8	Effect of nicotine and nicotinic receptors on anxiety and depression. NeuroReport, 2002, 13, 1097-1106.	0.6	396
9	Identification of Four Classes of Brain Nicotinic Receptors Using β2 Mutant Mice. Journal of Neuroscience, 1998, 18, 4461-4472.	1.7	372
10	Nicotine Decreases Food Intake Through Activation of POMC Neurons. Science, 2011, 332, 1330-1332.	6.0	337
11	Localization of the cystic fibrosis transmembrane conductance regulator in human bile duct epithelial cells. Gastroenterology, 1993, 105, 1857-1864.	0.6	330
12	Nicotinic Receptors in the Brain Links between Molecular Biology and Behavior. Neuropsychopharmacology, 2000, 22, 451-465.	2.8	310
13	Cholinergic signaling in the hippocampus regulates social stress resilience and anxiety- and depression-like behavior. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3573-3578.	3.3	299
14	Brain nicotinic receptors: structure and regulation, role in learning and reinforcement1Published on the World Wide Web on 24 October 1997.1. Brain Research Reviews, 1998, 26, 198-216.	9.1	280
15	Varenicline Reduces Alcohol Self-Administration in Heavy-Drinking Smokers. Biological Psychiatry, 2009, 66, 185-190.	0.7	275
16	Nicotine Induces Glutamate Release from Thalamocortical Terminals in Prefrontal Cortex. Neuropsychopharmacology, 2003, 28, 216-225.	2.8	241
17	Neuronal Systems Underlying Behaviors Related to Nicotine Addiction: Neural Circuits and Molecular Genetics. Journal of Neuroscience, 2002, 22, 3338-3341.	1.7	240
18	Sex differences in stress-related alcohol use. Neurobiology of Stress, 2019, 10, 100149.	1.9	237

#	Article	IF	CITATIONS
19	Nicotine as a modulator of behavior: beyond the inverted U. Trends in Pharmacological Sciences, 2003, 24, 493-499.	4.0	234
20	Nicotine receptors and depression: revisiting and revising the cholinergic hypothesis. Trends in Pharmacological Sciences, 2010, 31, 580-586.	4.0	234
21	Human Tobacco Smokers in Early Abstinence Have Higher Levels of beta2* Nicotinic Acetylcholine Receptors than Nonsmokers. Journal of Neuroscience, 2006, 26, 8707-8714.	1.7	209
22	Decreased Synaptic Vesicle Recycling Efficiency and Cognitive Deficits in Amphiphysin 1 Knockout Mice. Neuron, 2002, 33, 789-804.	3.8	208
23	GABA interneurons are the cellular trigger for ketamine's rapid antidepressant actions. Journal of Clinical Investigation, 2020, 130, 1336-1349.	3.9	208
24	Neuronal nicotinic acetylcholine receptor subunit knockout mice: physiological and behavioral phenotypes and possible clinical implications. , 2001, 92, 89-108.		194
25	Increased neurodegeneration during ageing in mice lacking high-affinity nicotine receptors. EMBO Journal, 1999, 18, 1235-1244.	3.5	193
26	Nicotinic receptors in aging and dementia. Journal of Neurobiology, 2002, 53, 641-655.	3.7	193
27	The drive to eat: comparisons and distinctions between mechanisms of food reward and drug addiction. Nature Neuroscience, 2012, 15, 1330-1335.	7.1	193
28	Aplysia neurons express a gene encoding multiple FMRFamide neuropeptides. Cell, 1985, 41, 457-467.	13.5	187
29	Neuroprotection via nAChRs: the role of nAChRs in neurodegenerative disorders such as Alzheimer's and Parkinson's disease. Frontiers in Bioscience - Landmark, 2008, 13, 492.	3.0	187
30	GABAergic and glutamatergic efferents of the mouse ventral tegmental area. Journal of Comparative Neurology, 2014, 522, 3308-3334.	0.9	178
31	Transgenic Animals with Inducible, Targeted Gene Expression in Brain. Molecular Pharmacology, 1998, 54, 495-503.	1.0	175
32	In vivonicotine treatment regulates mesocorticolimbic CREB and ERK signaling in C57Bl/6J mice. Journal of Neurochemistry, 2003, 84, 1431-1441.	2.1	173
33	Using Knockout and Transgenic Mice to Study Neurophysiology and Behavior. Physiological Reviews, 1998, 78, 1131-1163.	13.1	168
34	5-Iodo-A-85380, an α4β2 Subtype-Selective Ligand for Nicotinic Acetylcholine Receptors. Molecular Pharmacology, 2000, 57, 642-649.	1.0	167
35	An Instructive Role for Patterned Spontaneous Retinal Activity in Mouse Visual Map Development. Neuron, 2011, 70, 1115-1127.	3.8	162
36	Nicotinic α7 receptors enhance NMDA cognitive circuits in dorsolateral prefrontal cortex. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12078-12083.	3.3	153

#	Article	IF	CITATIONS
37	The Prototoxin lynx1 Acts on Nicotinic Acetylcholine Receptors to Balance Neuronal Activity and Survival In Vivo. Neuron, 2006, 51, 587-600.	3.8	151
38	Origin and Function of Stress-Induced IL-6 in Murine Models. Cell, 2020, 182, 372-387.e14.	13.5	148
39	Nicotinic agonists stimulate acetylcholine release from mouse interpeduncular nucleus: a function mediated by a different nAChR than dopamine release from striatum. Journal of Neurochemistry, 2008, 76, 258-268.	2.1	143
40	Molecular Mechanisms Underlying Behaviors Related to Nicotine Addiction. Cold Spring Harbor Perspectives in Medicine, 2013, 3, a012112-a012112.	2.9	141
41	The Dopamine/D1 Receptor Mediates the Phosphorylation and Inactivation of the Protein Tyrosine Phosphatase STEP via a PKA-Dependent Pathway. Journal of Neuroscience, 2000, 20, 5630-5638.	1.7	138
42	Antidepressant-Like Effects of Ceftriaxone in Male C57BL/6J Mice. Biological Psychiatry, 2007, 61, 250-252.	0.7	136
43	AgRP neurons regulate development of dopamine neuronal plasticity and nonfood-associated behaviors. Nature Neuroscience, 2012, 15, 1108-1110.	7.1	136
44	Neuromodulation by acetylcholine: examples from schizophrenia and depression. Current Opinion in Neurobiology, 2014, 29, 88-95.	2.0	135
45	Prenatal and Adolescent Exposure to Tobacco Smoke Modulates the Development of White Matter Microstructure. Journal of Neuroscience, 2007, 27, 13491-13498.	1.7	131
46	Genetics of nicotinic acetylcholine receptors: Relevance to nicotine addiction. Biochemical Pharmacology, 2008, 75, 323-333.	2.0	130
47	Cytisine, a partial agonist of high-affinity nicotinic acetylcholine receptors, has antidepressant-like properties in male C57BL/6J mice. Neuropharmacology, 2007, 52, 1256-1262.	2.0	128
48	GABA interneurons mediate the rapid antidepressant-like effects of scopolamine. Journal of Clinical Investigation, 2016, 126, 2482-2494.	3.9	124
49	Mood and anxiety regulation by nicotinic acetylcholine receptors: A potential pathway to modulate aggression and related behavioral states. Neuropharmacology, 2015, 96, 235-243.	2.0	122
50	The nicotinic antagonist mecamylamine has antidepressant-like effects in wild-type but not β2- or α7-nicotinic acetylcholine receptor subunit knockout mice. Psychopharmacology, 2006, 189, 395-401.	1.5	121
51	Regulation of Synaptic Efficacy in Hypocretin/Orexin-Containing Neurons by Melanin Concentrating Hormone in the Lateral Hypothalamus. Journal of Neuroscience, 2008, 28, 9101-9110.	1.7	120
52	FACS purification of immunolabeled cell types from adult rat brain. Journal of Neuroscience Methods, 2012, 203, 10-18.	1.3	119
53	High-affinity nicotinic acetylcholine receptors are required for antidepressant effects of amitriptyline on behavior and hippocampal cell proliferation. Biological Psychiatry, 2004, 56, 657-664.	0.7	114
54	Brain Localization and Behavioral Impact of the G-Protein-Gated K+Channel Subunit GIRK4. Journal of Neuroscience, 2000, 20, 5608-5615.	1.7	112

#	Article	IF	CITATIONS
55	Acute and long-term changes in the mesolimbic dopamine pathway after systemic or local single nicotine injections. European Journal of Neuroscience, 2002, 15, 1810-1818.	1.2	112
56	Neuroprotection by Nicotine in Mouse Primary Cortical Cultures Involves Activation of Calcineurin and L-Type Calcium Channel Inactivation. Journal of Neuroscience, 2003, 23, 10093-10099.	1.7	110
57	Nicotine Receptor Inactivation Decreases Sensitivity to Cocaine. Neuropsychopharmacology, 2001, 24, 576-589.	2.8	108
58	Prolonged wakefulness induces experience-dependent synaptic plasticity in mouse hypocretin/orexin neurons. Journal of Clinical Investigation, 2007, 117, 4022-4033.	3.9	103
59	Role of neuronal nicotinic receptors in the effects of nicotine and ethanol on contextual fear conditioning. Neuroscience, 2004, 129, 11-24.	1.1	102
60	CaMKII Phosphorylation of TARPÎ ³ -8 Is a Mediator of LTP and Learning and Memory. Neuron, 2016, 92, 75-83.	3.8	101
61	Immunochemical localization of calcium/calmodulin-dependent protein kinase I. Synapse, 1995, 20, 75-84.	0.6	100
62	Persistent β ₂ *-Nicotinic Acetylcholinergic Receptor Dysfunction in Major Depressive Disorder. American Journal of Psychiatry, 2012, 169, 851-859.	4.0	100
63	Common aspects of the action of nicotine and other drugs of abuse. Drug and Alcohol Dependence, 1998, 51, 165-172.	1.6	98
64	Modulation of ethanol consumption by genetic and pharmacological manipulation of nicotinic acetylcholine receptors in mice. Psychopharmacology, 2010, 208, 613-626.	1.5	97
65	Sex Differences in Availability of β ₂ *-Nicotinic Acetylcholine Receptors in Recently Abstinent Tobacco Smokers. Archives of General Psychiatry, 2012, 69, 418.	13.8	95
66	Nicotine-induced plasticity during development: Modulation of the cholinergic system and long-term consequences for circuits involved in attention and sensory processing. Neuropharmacology, 2009, 56, 254-262.	2.0	90
67	Molecules and circuits involved in nicotine addiction: The many faces of smoking. Neuropharmacology, 2014, 76, 545-553.	2.0	88
68	Knockout of STriatal enriched protein tyrosine phosphatase in mice results in increased ERK1/2 phosphorylation. Synapse, 2009, 63, 69-81.	0.6	84
69	The neuropeptide galanin modulates behavioral and neurochemical signs of opiate withdrawal. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 9028-9033.	3.3	82
70	Assessment of nicotinic acetylcholine receptor subunit contributions to nicotine self-administration in mutant mice. Psychopharmacology, 1999, 147, 25-26.	1.5	81
71	Sex differences in anxiety-like behavior and locomotor activity following chronic nicotine exposure in mice. Neuroscience Letters, 2008, 439, 187-191.	1.0	81
72	FACS Identifies Unique Cocaine-Induced Gene Regulation in Selectively Activated Adult Striatal Neurons. Journal of Neuroscience, 2011, 31, 4251-4259.	1.7	81

#	Article	IF	CITATIONS
73	Varenicline has antidepressant-like activity in the forced swim test and augments sertraline's effect. European Journal of Pharmacology, 2009, 605, 114-116.	1.7	79
74	Involvement of α6 nicotinic receptor subunit in nicotine-elicited locomotion, demonstrated by in vivo antisense oligonucleotide infusion. NeuroReport, 1999, 10, 2497-2501.	0.6	78
75	Fear conditioning and latent inhibition in mice lacking the high affinity subclass of nicotinic acetylcholine receptors in the brain. Neuropharmacology, 2000, 39, 2779-2784.	2.0	78
76	Nucleus Accumbens CREB Activity is Necessary for Nicotine Conditioned Place Preference. Neuropsychopharmacology, 2009, 34, 1993-2001.	2.8	78
77	An epigenetic mechanism mediates developmental nicotine effects on neuronal structure and behavior. Nature Neuroscience, 2016, 19, 905-914.	7.1	78
78	Role of Neuronal VEGF Signaling in the Prefrontal Cortex in the Rapid Antidepressant Effects of Ketamine. American Journal of Psychiatry, 2019, 176, 388-400.	4.0	77
79	Conditional Expression in Corticothalamic Efferents Reveals a Developmental Role for Nicotinic Acetylcholine Receptors in Modulation of Passive Avoidance Behavior. Journal of Neuroscience, 2003, 23, 3837-3843.	1.7	75
80	Reduction of cocaine place preference in mice lacking the protein phosphatase 1 inhibitors DARPP 32 or Inhibitor 1. Biological Psychiatry, 2002, 51, 612-620.	0.7	73
81	Characterization of GalR1, GalR2, and GalR3 immunoreactivity in catecholaminergic nuclei of the mouse brain. Journal of Comparative Neurology, 2004, 479, 410-423.	0.9	72
82	Alteration of hippocampal cell proliferation in mice lacking the ?2 subunit of the neuronal nicotinic acetylcholine receptor. Synapse, 2004, 54, 200-206.	0.6	71
83	Cytisine-Based Nicotinic Partial Agonists as Novel Antidepressant Compounds. Journal of Pharmacology and Experimental Therapeutics, 2009, 329, 377-386.	1.3	71
84	β2-Subunit-containing nicotinic acetylcholine receptors are involved in nicotine-induced increases in conditioned reinforcement but not progressive ratio responding for food in C57BL/6 mice. Psychopharmacology, 2006, 184, 328-338.	1.5	70
85	Multiple Nicotinic Acetylcholine Receptor Subtypes in the Mouse Amygdala Regulate Affective Behaviors and Response to Social Stress. Neuropsychopharmacology, 2016, 41, 1579-1587.	2.8	70
86	Impaired Synaptic Plasticity and Learning in Mice Lacking Â-Adducin, an Actin-Regulating Protein. Journal of Neuroscience, 2005, 25, 2138-2145.	1.7	69
87	Sex differences in response to oral amitriptyline in three animal models of depression in C57BL/6J mice. Psychopharmacology, 2003, 170, 94-101.	1.5	66
88	Galanin: A Novel Therapeutic Target for Depression, Anxiety Disorders and Drug Addiction?. CNS and Neurological Disorders - Drug Targets, 2006, 5, 225-232.	0.8	66
89	A translational investigation targeting stress-reactivity and prefrontal cognitive control with guanfacine for smoking cessation. Journal of Psychopharmacology, 2015, 29, 300-311.	2.0	66
90	Gender Differences in Learned Helplessness Behavior Are Influenced by Genetic Background. Pharmacology Biochemistry and Behavior, 2000, 66, 811-817.	1.3	65

#	Article	IF	CITATIONS
91	Reduced locomotor responses to cocaine in ghrelin-deficient mice. Neuroscience, 2011, 192, 500-506.	1.1	65
92	Striatalâ€enriched protein tyrosine phosphatase (STEP) knockout mice have enhanced hippocampal memory. European Journal of Neuroscience, 2011, 33, 2288-2298.	1.2	65
93	A Calcium- and Calmodulin-Dependent Kinase IÂ/Microtubule Affinity Regulating Kinase 2 Signaling Cascade Mediates Calcium-Dependent Neurite Outgrowth. Journal of Neuroscience, 2007, 27, 4413-4423.	1.7	64
94	The Regulatory Region of Calcium/Calmodulin-dependent Protein Kinase I Contains Closely Associated Autoinhibitory and Calmodulin-binding Domains. Journal of Biological Chemistry, 1995, 270, 23851-23859.	1.6	63
95	β2-subunit-containing nicotinic acetylcholine receptors are critical for dopamine-dependent locomotor activation following repeated nicotine administration. Neuropharmacology, 2004, 47, 132-139.	2.0	63
96	Rare Nonsynonymous Variants in Alpha-4 Nicotinic Acetylcholine Receptor Gene Protect Against Nicotine Dependence. Biological Psychiatry, 2011, 70, 528-536.	0.7	62
97	Nicotinic Regulation of Energy Homeostasis. Nicotine and Tobacco Research, 2012, 14, 1270-1290.	1.4	62
98	Mechanisms of Nicotine Addiction. Cold Spring Harbor Perspectives in Medicine, 2021, 11, a039610.	2.9	59
99	Promoter elements conferring neuron-specific expression of the β2-subunit of the neuronal nicotinic acetylcholine receptor studiedin vitro and in transgenic mice. Neuroscience, 1995, 69, 807-819.	1.1	58
100	Antidepressant-like effects of nicotine and transcranial magnetic stimulation in the olfactory bulbectomy rat model of depression. Brain Research Bulletin, 2008, 77, 13-18.	1.4	58
101	Modulation of morphine analgesia in αCGRP mutant mice. NeuroReport, 1999, 10, 849-854.	0.6	57
102	Cortico-Thalamic Connectivity is Vulnerable to Nicotine Exposure During Early Postnatal Development through α4/β2/α5 Nicotinic Acetylcholine Receptors. Neuropsychopharmacology, 2010, 35, 2324-2338.	2.8	57
103	Homozygous loss of DIAPH1 is a novel cause of microcephaly in humans. European Journal of Human Genetics, 2015, 23, 165-172.	1.4	57
104	Hippocampal α7 nicotinic ACh receptors contribute to modulation of depressionâ€like behaviour in C57BL/6J mice. British Journal of Pharmacology, 2018, 175, 1903-1914.	2.7	55
105	Acetylcholine is released in the basolateral amygdala in response to predictors of reward and enhances the learning of cue-reward contingency. ELife, 2020, 9, .	2.8	55
106	Inhibition of GABA interneurons in the mPFC is sufficient and necessary for rapid antidepressant responses. Molecular Psychiatry, 2021, 26, 3277-3291.	4.1	54
107	Pharmacological and null mutation approaches reveal nicotinic receptor diversity. European Journal of Pharmacology, 2000, 393, 123-135.	1.7	52
108	Changes in the Cholinergic System between Bipolar Depression and Euthymia as Measured with [1231]5IA Single Photon Emission Computed Tomography. Biological Psychiatry, 2013, 74, 768-776.	0.7	52

#	Article	IF	CITATIONS
109	Centrally administered galanin blocks morphine place preference in the mouse. Brain Research, 1999, 831, 33-42.	1.1	51
110	Interaction between noradrenergic and cholinergic signaling in amygdala regulates anxiety- and depression-related behaviors in mice. Neuropsychopharmacology, 2018, 43, 2118-2125.	2.8	51
111	α4β2* Nicotinic Acetylcholine Receptors Modulate the Effects of Ethanol and Nicotine on the Acoustic Startle Response. Alcoholism: Clinical and Experimental Research, 2003, 27, 1867-1875.	1.4	50
112	Nicotineâ€induced phosphorylation of ERK in mouse primary cortical neurons: evidence for involvement of glutamatergic signaling and CaMKII. Journal of Neurochemistry, 2007, 103, 666-678.	2.1	50
113	Galanin Protects Against Behavioral and Neurochemical Correlates of Opiate Reward. Neuropsychopharmacology, 2008, 33, 1864-1873.	2.8	50
114	Maternal smoking and autism spectrum disorder: meta-analysis with population smoking metrics as moderators. Scientific Reports, 2017, 7, 4315.	1.6	50
115	Effects of galanin on monoaminergic systems and HPA axis: Potential mechanisms underlying the effects of galanin on addiction- and stress-related behaviors. Brain Research, 2010, 1314, 206-218.	1.1	49
116	Menthol decreases oral nicotine aversion in C57BL/6 mice through a TRPM8-dependent mechanism. Tobacco Control, 2016, 25, ii50-ii54.	1.8	49
117	Nicotinic modulation of mesoprefrontal dopamine neurons: pharmacologic and neuroanatomic characterization. Journal of Pharmacology and Experimental Therapeutics, 2000, 295, 58-66.	1.3	49
118	Smoking as a complex but critical covariate in neurobiological studies of posttraumatic stress disorders: a review. Journal of Psychopharmacology, 2006, 20, 693-707.	2.0	47
119	Effects of the H3 receptor inverse agonist thioperamide on cocaine-induced locomotion in mice: role of the histaminergic system and potential pharmacokinetic interactions. Psychopharmacology, 2009, 202, 673-687.	1.5	47
120	Local Application of Neurotrophins Specifies Axons Through Inositol 1,4,5-Trisphosphate, Calcium, and Ca ²⁺ /Calmodulin–Dependent Protein Kinases. Science Signaling, 2011, 4, ra76.	1.6	47
121	α4β2 nicotinic acetylcholine receptor partial agonists with low intrinsic efficacy have antidepressant-like properties. Behavioural Pharmacology, 2011, 22, 291-299.	0.8	46
122	The 7q11.23 Protein DNAJC30 Interacts with ATP Synthase and Links Mitochondria to Brain Development. Cell, 2018, 175, 1088-1104.e23.	13.5	46
123	Nicotine withdrawal increases body weight, neuropeptide Y and Agouti-related protein expression in the hypothalamus and decreases uncoupling protein-3 expression in the brown adipose tissue in high-fat fed mice. Neuroscience Letters, 2007, 411, 72-76.	1.0	43
124	Dissociation between duration of action in the forced swim test in mice and nicotinic acetylcholine receptor occupancy with sazetidine, varenicline, and 5-I-A85380. Psychopharmacology, 2011, 217, 199-210.	1.5	43
125	Nicotine, Food Intake, and Activation of POMC Neurons. Neuropsychopharmacology, 2013, 38, 245-245.	2.8	43
126	Repeated <i>in vivo</i> exposure of cocaine induces longâ€lasting synaptic plasticity in hypocretin/orexinâ€producing neurons in the lateral hypothalamus in mice. Journal of Physiology, 2013, 591, 1951-1966.	1.3	43

#	Article	IF	CITATIONS
127	Galanin and galanin-like peptide modulate neurite outgrowth via protein kinase C-mediated activation of extracellular signal-related kinase. European Journal of Neuroscience, 2006, 23, 2937-2946.	1.2	42
128	Effect of cocaine self-administration on striatal PKA-regulated signaling in male and female rats. Psychopharmacology, 2007, 191, 263-271.	1.5	42
129	Biological Basis for the Co-morbidity Between Smoking and Mood Disorders. Journal of Dual Diagnosis, 2009, 5, 122-130.	0.7	42
130	In Vivo Evidence for β2 Nicotinic Acetylcholine Receptor Subunit Upregulation in Smokers as Compared With Nonsmokers With Schizophrenia. Biological Psychiatry, 2014, 76, 495-502.	0.7	41
131	Morphine dependence and withdrawal induced changes in cholinergic signaling. Pharmacology Biochemistry and Behavior, 2013, 109, 77-83.	1.3	40
132	High-affinity nicotinic acetylcholine receptor expression and trafficking abnormalities in psychiatric illness. Psychopharmacology, 2013, 229, 477-485.	1.5	38
133	Galanin receptor 1 gene expression is regulated by cyclic AMP through a CREB-dependent mechanism. Journal of Neurochemistry, 2008, 76, 191-200.	2.1	37
134	DARPP-32 interaction with adducin may mediate rapid environmental effects on striatal neurons. Nature Communications, 2015, 6, 10099.	5.8	37
135	The Nicotinic Acetylcholine Receptor Partial Agonist Varenicline Increases the Ataxic and Sedativeâ€Hypnotic Effects of Acute Ethanol Administration in C57BL/6J Mice. Alcoholism: Clinical and Experimental Research, 2010, 34, 2053-2060.	1.4	36
136	Nestin promoter/enhancer directs transgene expression to precursors of adult generated periglomerular neurons. Journal of Comparative Neurology, 2004, 475, 128-141.	0.9	35
137	Allelic Variation of Calsyntenin 2 (CLSTN2) Modulates the Impact of Developmental Tobacco Smoke Exposure on Mnemonic Processing in Adolescents. Biological Psychiatry, 2009, 65, 671-679.	0.7	35
138	Oral nicotine consumption does not affect maternal care or early development in mice but results in modest hyperactivity in adolescence. Physiology and Behavior, 2010, 101, 764-769.	1.0	35
139	Targeting the Noradrenergic System for Gender-Sensitive Medication Development for Tobacco Dependence. Nicotine and Tobacco Research, 2015, 17, 486-495.	1.4	35
140	Inhibition of both α7* and β2* nicotinic acetylcholine receptors is necessary to prevent development of sensitization to cocaine-elicited increases in extracellular dopamine levels in the ventral striatum. Psychopharmacology, 2006, 187, 181-188.	1.5	34
141	Contribution of nicotinic acetylcholine receptors containing the β2-subunit to the behavioural effects of nicotine. Biochemical Society Transactions, 1997, 25, 824-829.	1.6	33
142	Upregulation of Galanin Binding Sites and GalR1 mRNA Levels in the Mouse Locus Coeruleus Following Chronic Morphine Treatments and Precipitated Morphine Withdrawal. Neuropsychopharmacology, 2000, 23, 127-137.	2.8	33
143	Characterization of [125I]epibatidine binding and nicotinic agonist-mediated 86Rb+ efflux in interpeduncular nucleus and inferior colliculus of β2 null mutant mice. Journal of Neurochemistry, 2002, 81, 1102-1115.	2.1	33
144	Localized lowâ€level reâ€expression of highâ€affinity mesolimbic nicotinic acetylcholine receptors restores nicotineâ€induced locomotion but not place conditioning. Genes, Brain and Behavior, 2009, 8, 257-266.	1.1	33

#	Article	IF	CITATIONS
145	Imaging Changes in Synaptic Acetylcholine Availability in Living Human Subjects. Journal of Nuclear Medicine, 2013, 54, 78-82.	2.8	33
146	Differential effects of nicotinic antagonists perfused into the nucleus accumbens or the ventral tegmental area on cocaine-induced dopamine release in the nucleus accumbens of mice. Psychopharmacology, 2006, 190, 189-199.	1.5	32
147	Galanin – 25 years with a multitalented neuropeptide. Cellular and Molecular Life Sciences, 2008, 65, 1872-1879.	2.4	32
148	GalR1, but not GalR2 or GalR3, levels are regulated by galanin signaling in the locus coeruleus through a cyclic AMP-dependent mechanism. Journal of Neurochemistry, 2005, 93, 1168-1176.	2.1	31
149	Deficiency in Inhibitory Cortical Interneurons Associates with Hyperactivity in Fibroblast Growth Factor Receptor 1 Mutant Mice. Biological Psychiatry, 2008, 63, 953-962.	0.7	31
150	Effects of galanin on cocaine-mediated conditioned place preference and ERK signaling in mice. Psychopharmacology, 2009, 204, 95-102.	1.5	31
151	Cytoplasmic localization of calcium/calmodulin-dependent protein kinase I-α depends on a nuclear export signal in its regulatory domain. FEBS Letters, 2004, 566, 275-280.	1.3	30
152	Plasticity of Prefrontal Attention Circuitry: Upregulated Muscarinic Excitability in Response to Decreased Nicotinic Signaling Following Deletion of α5 or β2 Subunits. Journal of Neuroscience, 2011, 31, 16458-16463.	1.7	30
153	The Synaptic Adhesion Molecule SynCAM 1 Contributes to Cocaine Effects on Synapse Structure and Psychostimulant Behavior. Neuropsychopharmacology, 2013, 38, 628-638.	2.8	30
154	The role of acetylcholine in negative encoding bias: Too much of a good thing?. European Journal of Neuroscience, 2021, 53, 114-125.	1.2	29
155	Galanin and Addiction. Exs, 2010, 102, 195-208.	1.4	29
156	Use of knock-out mice to determine the molecular basis for the actions of nicotine. Nicotine and Tobacco Research, 1999, 1, 121-125.	1.4	28
157	Calcineurin Downregulation in the Amygdala Is Sufficient to Induce Anxiety-like and Depression-like Behaviors in C57BL/6J Male Mice. Biological Psychiatry, 2014, 75, 991-998.	0.7	28
158	Expression of the 5-HT1A Serotonin Receptor in the Hippocampus Is Required for Social Stress Resilience and the Antidepressant-Like Effects Induced by the Nicotinic Partial Agonist Cytisine. Neuropsychopharmacology, 2015, 40, 938-946.	2.8	28
159	Knock-Out Mouse Models Used to Study Neurobiological Systems. Critical Reviews in Neurobiology, 1999, 13, 103-149.	3.3	28
160	Nociceptive thresholds are controlled through spinal β2-subunit-containing nicotinic acetylcholine receptors. Pain, 2011, 152, 2131-2137.	2.0	27
161	Modulation of aggressive behavior in mice by nicotinic receptor subtypes. Biochemical Pharmacology, 2015, 97, 488-497.	2.0	27
162	Bidirectional Regulation of Aggression in Mice by Hippocampal Alpha-7 Nicotinic Acetylcholine Receptors. Neuropsychopharmacology, 2018, 43, 1267-1275.	2.8	27

#	Article	IF	CITATIONS
163	Sex differences in amphetamine-induced dopamine release in the dorsolateral prefrontal cortex of tobacco smokers. Neuropsychopharmacology, 2019, 44, 2205-2211.	2.8	27
164	Implications of Oligomeric Amyloid-Beta (oAβ ₄₂) Signaling through α7β2-Nicotinic Acetylcholine Receptors (nAChRs) on Basal Forebrain Cholinergic Neuronal Intrinsic Excitability and Cognitive Decline. Journal of Neuroscience, 2021, 41, 555-575.	1.7	26
165	Antidepressant-like effects of guanfacine and sex-specific differences in effects on c-fos immunoreactivity and paired-pulse ratio in male and female mice. Psychopharmacology, 2015, 232, 3539-3549.	1.5	25
166	Nicotinic-agonist stimulated 86Rb+ efflux and [3H]epibatidine binding of mice differing in β2 genotype. Neuropharmacology, 2000, 39, 2632-2645.	2.0	24
167	The Galanin Receptor 1 Gene Associates with Tobacco Craving in Smokers Seeking Cessation Treatment. Neuropsychopharmacology, 2011, 36, 1412-1420.	2.8	23
168	Reduction of Aggressive Episodes After Repeated Transdermal Nicotine Administration in a Hospitalized Adolescent with Autism Spectrum Disorder. Journal of Autism and Developmental Disorders, 2015, 45, 3061-3066.	1.7	23
169	Role of Calcineurin in Nicotine-Mediated Locomotor Sensitization. Journal of Neuroscience, 2007, 27, 8571-8580.	1.7	22
170	Role of β2-containing nicotinic acetylcholine receptors in auditory event-related potentials. Psychopharmacology, 2009, 202, 745-751.	1.5	22
171	Structure, Regulation, and Function of Calcium/Calmodulin-Dependent Protein Kinase I. Advances in Pharmacology, 1996, 36, 251-275.	1.2	21
172	Voluntary oral nicotine intake in mice down-regulates GluR2 but does not modulate depression-like behaviors. Neuroscience Letters, 2008, 434, 18-22.	1.0	21
173	Nicotinic Acetylcholine Receptor Signaling in the Hypothalamus: Mechanisms Related to Nicotine's Effects on Food Intake. Nicotine and Tobacco Research, 2020, 22, 152-163.	1.4	21
174	Impaired hypocretin/orexin system alters responses to salient stimuli in obese male mice. Journal of Clinical Investigation, 2020, 130, 4985-4998.	3.9	21
175	Mice lacking the galanin gene show decreased sensitivity to nicotine conditioned place preference. Pharmacology Biochemistry and Behavior, 2011, 98, 87-93.	1.3	20
176	Differential Modulation of Brain Nicotinic Acetylcholine Receptor Function by Cytisine, Varenicline, and Two Novel Bispidine Compounds: Emergent Properties of a Hybrid Molecule. Journal of Pharmacology and Experimental Therapeutics, 2013, 347, 424-437.	1.3	20
177	An Exploratory Trial of Transdermal Nicotine for Aggression and Irritability in Adults with Autism Spectrum Disorder. Journal of Autism and Developmental Disorders, 2018, 48, 2748-2757.	1.7	20
178	Positive modulation of NMDA receptors by AGN-241751 exerts rapid antidepressant-like effects via excitatory neurons. Neuropsychopharmacology, 2021, 46, 799-808.	2.8	20
179	Effect of doxazosin on stress reactivity and the ability to resist smoking. Journal of Psychopharmacology, 2017, 31, 830-840.	2.0	19
180	Acetylcholine Acts through Nicotinic Receptors to Enhance the Firing Rate of a Subset of Hypocretin Neurons in the Mouse Hypothalamus through Distinct Presynaptic and Postsynaptic Mechanisms. ENeuro, 2015, 2, ENEURO.0052-14.2015.	0.9	19

#	Article	IF	CITATIONS
181	Rare Human Nicotinic Acetylcholine Receptor α4 Subunit (CHRNA4) Variants Affect Expression and Function of High-Affinity Nicotinic Acetylcholine Receptors. Journal of Pharmacology and Experimental Therapeutics, 2014, 348, 410-420.	1.3	18
182	Impaired auditory discrimination learning following perinatal nicotine exposure or β2 nicotinic acetylcholine receptor subunit deletion. Behavioural Brain Research, 2012, 231, 170-180.	1.2	17
183	Molecular Mechanisms Underlying the Motivational Effects of Nicotine. Nebraska Symposium on Motivation, 2008, 55, 17-30.	0.9	17
184	Effects of nicotine pretreatment on dopaminergic and behavioral responses to conditioned fear stress in rats: dissociation of biochemical and behavioral effects. Biological Psychiatry, 2001, 49, 300-306.	0.7	16
185	Expression of ezrin in glial tubes in the adult subventricular zone and rostral migratory stream. Neuroscience, 2006, 143, 851-861.	1.1	16
186	Self-Administration of Ethanol, Cocaine, or Nicotine Does Not Decrease the Soma Size of Ventral Tegmental Area Dopamine Neurons. PLoS ONE, 2014, 9, e95962.	1.1	16
187	Why Editorial Rejection?. Journal of Neuroscience, 2018, 38, 1-2.	1.7	16
188	Striatin-1 is a B subunit of protein phosphatase PP2A that regulates dendritic arborization and spine development in striatal neurons. Journal of Biological Chemistry, 2018, 293, 11179-11194.	1.6	16
189	Analytical Transparency and Reproducibility in Human Neuroimaging Studies. Journal of Neuroscience, 2018, 38, 3375-3376.	1.7	16
190	Modulation of a calcium/calmodulin-dependent protein kinase cascade by retinoic acid during neutrophil maturation. Experimental Hematology, 1999, 27, 1682-1690.	0.2	15
191	Brain β2*-nicotinic acetylcholine receptor occupancy after use of a nicotine inhaler. International Journal of Neuropsychopharmacology, 2011, 14, 389-398.	1.0	15
192	Molecular and cellular characterization of nicotinic acetylcholine receptor subtypes in the arcuate nucleus of the mouse hypothalamus. European Journal of Neuroscience, 2018, 48, 1600-1619.	1.2	15
193	Cumulative Effects of Social Stress on Reward-Guided Actions and Prefrontal Cortical Activity. Biological Psychiatry, 2020, 88, 541-553.	0.7	15
194	Galanin can attenuate opiate reinforcement and withdrawal. Neuropeptides, 2005, 39, 313-315.	0.9	14
195	Cocaine self-administration and locomotor sensitization are not altered in CART knockout mice. Behavioural Brain Research, 2006, 171, 56-62.	1.2	14
196	Locomotion and self-administration induced by cocaine in 129/OlaHsd mice lacking galanin Behavioral Neuroscience, 2010, 124, 828-838.	0.6	14
197	Galanin negatively modulates opiate withdrawal via galanin receptor 1. Psychopharmacology, 2012, 220, 619-625.	1.5	14
198	Constitutive knockout of the membrane cytoskeleton protein beta adducin decreases mushroom spine density in the nucleus accumbens but does not prevent spine remodeling in response to cocaine. European Journal of Neuroscience, 2013, 37, 1-9.	1.2	14

#	Article	IF	CITATIONS
199	Galaninâ€induced decreases in nucleus accumbens/striatum excitatory postsynaptic potentials and morphine conditioned place preference require both galanin receptor 1 and galanin receptor 2. European Journal of Neuroscience, 2013, 37, 1541-1549.	1.2	14
200	Access to nicotine in drinking water reduces weight gain without changing caloric intake on high fat diet in male C57BL/6J mice. Neuropharmacology, 2017, 123, 210-220.	2.0	14
201	Effects of varenicline on alcohol self-administration and craving in drinkers with depressive symptoms. Journal of Psychopharmacology, 2017, 31, 906-914.	2.0	14
202	Regulation of aggressive behaviors by nicotinic acetylcholine receptors: Animal models, human genetics, and clinical studies. Neuropharmacology, 2020, 167, 107929.	2.0	14
203	microRNA-33 maintains adaptive thermogenesis via enhanced sympathetic nerve activity. Nature Communications, 2021, 12, 843.	5.8	14
204	Identification and Characterization ofAplysiaAdducin, anAplysiaCytoskeletal Protein Homologous to Mammalian Adducins: Increased Phosphorylation at a Protein Kinase C Consensus Site during Long-Term Synaptic Facilitation. Journal of Neuroscience, 2003, 23, 2675-2685.	1.7	13
205	Galanin attenuates cyclic AMP regulatory element-binding protein (CREB) phosphorylation induced by chronic morphine and naloxone challenge in Cath.a cells and primary striatal cultures. Journal of Neurochemistry, 2006, 96, 1160-1168.	2.1	13
206	Prenatal cocaine exposure enhances responsivity of locus coeruleus norepinephrine neurons: Role of autoreceptors. Neuroscience, 2007, 147, 419-427.	1.1	13
207	Decreased α4β2 nicotinic receptor number in the absence of mRNA changes suggests postâ€ŧranscriptional regulation in the spontaneously hypertensive rat model of ADHD. Journal of Neurochemistry, 2011, 119, 240-250.	2.1	13
208	Exploring the Nicotinic Acetylcholine Receptor-associated Proteome with iTRAQ and Transgenic Mice. Genomics, Proteomics and Bioinformatics, 2013, 11, 207-218.	3.0	13
209	Menthol disrupts nicotine's psychostimulant properties in an age and sex-dependent manner in C57BL/6J mice. Behavioural Brain Research, 2017, 334, 72-77.	1.2	13
210	Evaluation of the Nicotinic Acetylcholine Receptor-Associated Proteome at Baseline and Following Nicotine Exposure in Human and Mouse Cortex. ENeuro, 2016, 3, ENEURO.0166-16.2016.	0.9	13
211	Hippocampal acetylcholine modulates stress-related behaviors independent of specific cholinergic inputs. Molecular Psychiatry, 2022, 27, 1829-1838.	4.1	13
212	Purification and characterization of PCPP-260: A Purkinje cell-enriched cyclic amp-regulated membrane phosphoprotein of Mr 260,000. Synapse, 1988, 2, 89-96.	0.6	12
213	<i>CHRNA4</i> and <i>ANKK1</i> Polymorphisms Influence Smoking-Induced Nicotinic Acetylcholine Receptor Upregulation. Nicotine and Tobacco Research, 2016, 18, 1845-1852.	1.4	12
214	The Effect of Treatment with Guanfacine, an Alpha2 Adrenergic Agonist, on Dopaminergic Tone in Tobacco Smokers: An [11C]FLB457 PET Study. Neuropsychopharmacology, 2018, 43, 1052-1058.	2.8	12
215	Variability in nicotine conditioned place preference and stressâ€induced reinstatement in mice: Effects of sex, initial chamber preference, and guanfacine. Genes, Brain and Behavior, 2020, 19, e12601.	1.1	12
216	Sex Differences in the Ventral Tegmental Area and Nucleus Accumbens Proteome at Baseline and Following Nicotine Exposure. Frontiers in Molecular Neuroscience, 2021, 14, 657064.	1.4	12

#	Article	IF	CITATIONS
217	Sex differences in stress-induced alcohol intake: a review of preclinical studies focused on amygdala and inflammatory pathways. Psychopharmacology, 2022, 239, 2041-2061.	1.5	12
218	Evaluation of the Phosphoproteome of Mouse Alpha 4/Beta 2-Containing Nicotinic Acetylcholine Receptors In Vitro and In Vivo. Proteomes, 2018, 6, 42.	1.7	11
219	Hippocampal knockdown of α2 nicotinic or M1 muscarinic acetylcholine receptors in C57BL/6J male mice impairs cued fear conditioning. Genes, Brain and Behavior, 2020, 19, e12677.	1.1	11
220	The membrane cytoskeletal protein adducin is phosphorylated by protein kinase C in D1 neurons of the nucleus accumbens and dorsal striatum following cocaine administration. Journal of Neurochemistry, 2009, 111, 1129-1137.	2.1	10
221	Examining antidepressant drug response by smoking status: why is it important and how often is it done?. Journal of Psychopharmacology, 2011, 25, 1269-1276.	2.0	10
222	Mediating Role of Stress Reactivity in the Effects of Prenatal Tobacco Exposure on Childhood Mental Health Outcomes. Nicotine and Tobacco Research, 2014, 16, 174-185.	1.4	10
223	Nicotine-taking and nicotine-seeking in C57Bl/6J mice without prior operant training or food restriction. Behavioural Brain Research, 2012, 230, 34-39.	1.2	9
224	Using brief clinician and parent measures to track outcomes in outpatient child psychiatry: longer term followâ€up and comparative effectiveness. Child and Adolescent Mental Health, 2012, 17, 222-230.	1.8	9
225	Administration of the calcineurin inhibitor cyclosporine modulates cocaine-induced locomotor activity in rats. Psychopharmacology, 2008, 200, 129-139.	1.5	8
226	Association of Cigarette Smoking With Interpersonal and Self-Directed Violence in a Large Community-Based Sample. Nicotine and Tobacco Research, 2016, 18, 1456-1462.	1.4	8
227	Sex differences in progestogen- and androgen-derived neurosteroids in vulnerability to alcohol and stress-related disorders. Neuropharmacology, 2021, 187, 108499.	2.0	8
228	Positive modulation of N-methyl-D-aspartate receptors in the mPFC reduces the spontaneous recovery of fear. Molecular Psychiatry, 2022, 27, 2580-2589.	4.1	8
229	Effects of a nicotinic agonist on the Brief Psychiatric Rating Scale five-factor subscale model in schizophrenia. Schizophrenia Research, 2018, 195, 568-569.	1.1	7
230	New Reviewer Mentoring Program. Journal of Neuroscience, 2018, 38, 511-511.	1.7	6
231	Converging evidence that short-active photoperiod increases acetylcholine signaling in the hippocampus. Cognitive, Affective and Behavioral Neuroscience, 2020, 20, 1173-1183.	1.0	6
232	Reporting on Experimental Design and Statistical Analysis. Journal of Neuroscience, 2017, 37, 3737-3737.	1.7	5
233	Perinatal nicotine exposure impairs learning of a skilled forelimb reaching task in male but not female adult mice. Behavioural Brain Research, 2019, 367, 176-180.	1.2	5
234	Two Introns Define Functional Domains of a Neuropeptide Precursor in <u>Aplysia</u> ¹ . Clinical and Experimental Hypertension, 1984, 6, 2133-2140.	0.3	4

#	Article	IF	CITATIONS
235	MicroRNA knocks down cocaine. Nature, 2010, 466, 194-195.	13.7	4
236	An indirect resilience to addiction. Nature Neuroscience, 2013, 16, 521-523.	7.1	3
237	Peer Review Week 2020: Trust in Peer Review. Journal of Neuroscience, 2020, 40, 7378-7378.	1.7	2
238	Effects of nicotine on DARPP-32 and CaMKII signaling relevant to addiction. Advances in Pharmacology, 2021, 90, 89-115.	1.2	2
239	Testing the Genetics of Behavior in Mice. Science, 1999, 285, 2067d-2067.	6.0	2
240	SfN Journals: Two Paths, One Goal: Sharing Strong Science. Journal of Neuroscience, 2016, 36, 7075-7075.	1.7	1
241	JNeurosci Manuscripts May Now Include Extended Datasets. Journal of Neuroscience, 2017, 37, 3441-3441.	1.7	1
242	Science is a Marathon Not a Sprint: Creating a Positive Culture for Early Career Researchers. Nicotine and Tobacco Research, 2018, 20, 1037-1037.	1.4	1
243	Peer Review Week: Quality in Peer Review. Journal of Neuroscience, 2019, 39, 7452-7452.	1.7	1
244	Ronald S. Duman, Ph.D. (1954–2020). Neuropsychopharmacology, 2020, 45, 1078-1078.	2.8	1
245	Celebrating 50 Years of Neuroscience. Journal of Neuroscience, 2020, 40, 2-2.	1.7	1
246	Nicotine Pharmacology, Abuse, and Addiction. , 2016, , 3659-3677.		1
247	35 Nicotinic receptors (nAChR) in the brain : Gene expression and contribution to learning and aging processes. Neurobiology of Aging, 1996, 17, S9-S10.	1.5	0
248	Analysis of developmental evolution of synapses in CGRP knock-out mice. Journal of Physiology (Paris), 1998, 92, 488.	2.1	0
249	Mouse genetics and transgenics: a practical approach. Heredity, 2000, 84, 733-734.	1.2	0
250	S43 INVOLVEMENT OF SIGNAL TRANSDUCTION CASCADES IN NICOTINE REINFORCEMENT. Behavioural Pharmacology, 2005, 16, S14.	0.8	0
251	Use of Animal Models to Test the Specificity of Nicotinic Drugs. CNS Neuroscience & Therapeutics, 2006, 5, 3-3.	4.0	0
252	Role of Nicotinic Acetylcholine Receptors in Neurodegeneration or Neuroprotection During Aging. CNS Neuroscience & Therapeutics, 2006, 6, 28-28.	4.0	0

#	Article	IF	CITATIONS
253	Nicotine, Striatum, and Reward. Biological Psychiatry, 2013, 73, 205-206.	0.7	Ο
254	A Commitment to Communication from the New Editor-in-Chief. Journal of Neuroscience, 2016, 36, iii-iii.	1.7	0
255	Dual Perspectives. Journal of Neuroscience, 2016, 36, 8037-8037.	1.7	Ο
256	New Online Platform Will Allow Early Release, Alt-metrics, and Extended Datasets. Journal of Neuroscience, 2016, 36, 10229-10229.	1.7	0
257	Gratitude to Our Reviewers. Journal of Neuroscience, 2016, 36, 9267-9267.	1.7	Ο
258	Editor Column: Progressions. Journal of Neuroscience, 2017, 37, 1055-1055.	1.7	0
259	No Submission Fee for SfN Members. Journal of Neuroscience, 2017, 37, 2267-2267.	1.7	Ο
260	Direct Submissions from bioRxiv. Journal of Neuroscience, 2017, 37, 237-237.	1.7	0
261	Editorial: Looking Back on a Year as Editor-in-Chief. Journal of Neuroscience, 2017, 37, 5589-5590.	1.7	0
262	Celebrating Peer Review Week 2017: Transparency in the Review Process. Journal of Neuroscience, 2017, 37, 8577-8577.	1.7	0
263	Peer Review Week 2018: Diversity in Peer Review. Journal of Neuroscience, 2018, 38, 7929-7929.	1.7	0
264	Induction of reversible bidirectional social approach bias by olfactory conditioning in male mice. Social Neuroscience, 2020, 15, 25-35.	0.7	0
265	End of a [Paper] Era. Journal of Neuroscience, 2020, 40, 9548-9548.	1.7	0
266	40 Years of The Journal of Neuroscience. Journal of Neuroscience, 2021, 41, 2-2.	1.7	0
267	A Taste of the SfN Annual Meeting. Journal of Neuroscience, 2021, 41, 812-812.	1.7	0
268	Peer Review Week 2021: Identity in Peer Review. Journal of Neuroscience, 2021, 41, 7923-7923.	1.7	0
269	Animal Models of Nicotine Addiction. , 2006, , 39-60.		0
270	Nicotine-Mediated Activation of Signal Transduction Pathways. Novartis Foundation Symposium, 0, , 83-95.	1.2	0

#	Article	IF	CITATIONS
271	Nicotine Pharmacology, Abuse, and Addiction. , 2015, , 1-19.		0
272	SfN Journals: Two Paths, One Goal: Sharing Strong Science. ENeuro, 2016, 3, ENEURO.0154-16.2016.	0.9	0
273	A Change in Scope and a Call for Papers. Journal of Neuroscience, 2022, 42, 531-531.	1.7	0
274	Animal Models to Investigate the Impact of Flavors on Nicotine Addiction and Dependence. Current Neuropharmacology, 2022, 20, 2175-2201.	1.4	0