
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4504090/publications.pdf Version: 2024-02-01

Ημλ ΖΗΟΝΟ

#	Article	lF	CITATIONS
1	Iron-mediated activation of persulfate and peroxymonosulfate in both homogeneous and heterogeneous ways: A review. Chemical Engineering Journal, 2020, 384, 123265.	6.6	544
2	Adsorptive removal of methylene blue by rhamnolipid-functionalized graphene oxide from wastewater. Water Research, 2014, 67, 330-344.	5.3	527
3	Evaluation of water quality in the South-to-North Water Diversion Project of China using the water quality index (WQI) method. Water Research, 2020, 178, 115781.	5.3	238
4	Advances in applications of rhamnolipids biosurfactant in environmental remediation: A review. Biotechnology and Bioengineering, 2018, 115, 796-814.	1.7	148
5	Enhanced adsorptive removal of p-nitrophenol from water by aluminum metal–organic framework/reduced graphene oxide composite. Scientific Reports, 2016, 6, 25638.	1.6	134
6	Effects of rhamnolipids on microorganism characteristics and applications in composting: A review. Microbiological Research, 2017, 200, 33-44.	2.5	133
7	Effect of rhamnolipid solubilization on hexadecane bioavailability: enhancement or reduction?. Journal of Hazardous Materials, 2017, 322, 394-401.	6.5	117
8	Application of molecular docking for the degradation of organic pollutants in the environmental remediation: A review. Chemosphere, 2018, 203, 139-150.	4.2	111
9	Heterogeneous Fenton-like catalyst for treatment of rhamnolipid-solubilized hexadecane wastewater. Chemosphere, 2019, 236, 124387.	4.2	93
10	Oxygen-Vacancy-Enhanced Peroxidase-like Activity of Reduced Co ₃ O ₄ Nanocomposites for the Colorimetric Detection of H ₂ O ₂ and Glucose. Inorganic Chemistry, 2020, 59, 3152-3159.	1.9	92
11	Co-degradation with glucose of four surfactants, CTAB, Triton X-100, SDS and Rhamnolipid, in liquid culture media and compost matrix. Biodegradation, 2007, 18, 303-310.	1.5	87
12	Adsorption of dirhamnolipid on four microorganisms and the effect on cell surface hydrophobicity. Applied Microbiology and Biotechnology, 2007, 77, 447-455.	1.7	84
13	Fabrication of BSA@AuNC-Based Nanostructures for Cell Fluoresce Imaging and Target Drug Delivery. ACS Applied Materials & Interfaces, 2018, 10, 8947-8954.	4.0	83
14	Adsorption of monorhamnolipid and dirhamnolipid on two Pseudomonas aeruginosa strains and the effect on cell surface hydrophobicity. Applied Microbiology and Biotechnology, 2008, 79, 671-677.	1.7	79
15	Transport of bacteria in porous media and its enhancement by surfactants for bioaugmentation: A review. Biotechnology Advances, 2017, 35, 490-504.	6.0	77
16	Mechanisms for rhamnolipids-mediated biodegradation of hydrophobic organic compounds. Science of the Total Environment, 2018, 634, 1-11.	3.9	75
17	Degradation of landfill leachate compounds by persulfate for groundwater remediation. Chemical Engineering Journal, 2017, 307, 399-407.	6.6	67
18	Surfactant-enhanced aquifer remediation: Mechanisms, influences, limitations and the countermeasures. Chemosphere, 2020, 252, 126620.	4.2	58

#	Article	IF	CITATIONS
19	Effect of monorhamnolipid on the degradation of n-hexadecane by Candida tropicalis and the association with cell surface properties. Applied Microbiology and Biotechnology, 2011, 90, 1155-1161.	1.7	56
20	Production, functional stability, and effect of rhamnolipid biosurfactant from Klebsiella sp. on phenanthrene degradation in various medium systems. Ecotoxicology and Environmental Safety, 2021, 207, 111514.	2.9	51
21	Characteristics of mannosylerythritol lipids and their environmental potential. Carbohydrate Research, 2015, 407, 63-72.	1.1	47
22	Effect of low-concentration rhamnolipid on adsorption of Pseudomonas aeruginosa ATCC 9027 on hydrophilic and hydrophobic surfaces. Journal of Hazardous Materials, 2015, 285, 383-388.	6.5	45
23	Terahertz wave reference-free phase imaging for identification of explosives. Applied Physics Letters, 2008, 92, 091117.	1.5	42
24	Influence of rhamnolipids and Triton X-100 on adsorption of phenol by Penicillium simplicissimum. Bioresource Technology, 2012, 110, 468-473.	4.8	39
25	Effects of rhamnolipids on the removal of 2,4,2,4-tetrabrominated biphenyl ether (BDE-47) by Phanerochaete chrysosporium analyzed with a combined approach of experiments and molecular docking. Chemosphere, 2018, 210, 922-930.	4.2	38
26	Degradation of pseudo-solubilized and mass hexadecane by a Pseudomonas aeruginosa with treatment of rhamnolipid biosurfactant. International Biodeterioration and Biodegradation, 2014, 94, 152-159.	1.9	37
27	Fast removal of tetracycline from wastewater by reduced graphene oxide prepared via microwave-assisted ethylenediamine–N,N'–disuccinic acid induction method. Environmental Science and Pollution Research, 2016, 23, 18657-18671.	2.7	37
28	The natural activation ability of subsurface media to promote in-situ chemical oxidation of 1,4-dioxane. Water Research, 2019, 149, 386-393.	5.3	37
29	Cobalt Nanoparticles Embedded into N-Doped Carbon from Metal Organic Frameworks as Highly Active Electrocatalyst for Oxygen Evolution Reaction. Polymers, 2019, 11, 828.	2.0	36
30	The performance of pyrite-based autotrophic denitrification column for permeable reactive barrier under natural environment. Bioresource Technology, 2019, 290, 121763.	4.8	33
31	Optimizing rhamnolipid production by Pseudomonas aeruginosa ATCC 9027 grown on waste frying oil using response surface method and batch-fed fermentation. Journal of Central South University, 2013, 20, 1015-1021.	1.2	31
32	Hollow and hierarchical Na2Li2Ti6O14 microspheres with high electrochemical performance as anode material for lithium-ion battery. Science China Materials, 2017, 60, 427-437.	3.5	30
33	Transport of engineered nanoparticles in porous media and its enhancement for remediation of contaminated groundwater. Critical Reviews in Environmental Science and Technology, 2020, 50, 2301-2378.	6.6	30
34	Effects of dirhamnolipid and SDS on enzyme production from Phanerochaete chrysosporium in submerged fermentation. Process Biochemistry, 2008, 43, 1300-1303.	1.8	29
35	Aggregate-based sub-CMC solubilization of n-alkanes by monorhamnolipid biosurfactant. New Journal of Chemistry, 2016, 40, 2028-2035.	1.4	28
36	Effect of low-concentration rhamnolipid on transport of Pseudomonas aeruginosa ATCC 9027 in an ideal porous medium with hydrophilic or hydrophobic surfaces. Colloids and Surfaces B: Biointerfaces, 2016, 139, 244-248.	2.5	26

#	Article	IF	CITATIONS
37	Spatio-temporal Characterization Analysis and Water Quality Assessment of the South-to-North Water Diversion Project of China. International Journal of Environmental Research and Public Health, 2019, 16, 2227.	1.2	26
38	Aggregate-based sub-CMC solubilization of hexadecane by surfactants. RSC Advances, 2015, 5, 78142-78149.	1.7	25
39	Effect of lowâ€concentration rhamnolipid biosurfactant on <scp><i>P</i></scp> <i>seudomonas aeruginosa</i> transport in natural porous media. Water Resources Research, 2017, 53, 361-375.	1.7	25
40	Sub-CMC solubilization of dodecane by rhamnolipid in saturated porous media. Scientific Reports, 2016, 6, 33266.	1.6	22
41	Aggregation of low-concentration dirhamnolipid biosurfactant in electrolyte solution. RSC Advances, 2015, 5, 88578-88582.	1.7	21
42	Role of low-concentration monorhamnolipid in cell surface hydrophobicity of Pseudomonas aeruginosa: adsorption or lipopolysaccharide content variation. Applied Microbiology and Biotechnology, 2014, 98, 10231-10241.	1.7	20
43	Thiophene-based rhodamine as selectivef luorescence probe for Fe(III) and Al(III) in living cells. Analytical and Bioanalytical Chemistry, 2017, 409, 5547-5554.	1.9	20
44	Bioretention for removal of nitrogen: processes, operational conditions, and strategies for improvement. Environmental Science and Pollution Research, 2021, 28, 10519-10535.	2.7	20
45	Film entrainment and microplastic particles retention during gas invasion in suspension-filled microchannels. Water Research, 2021, 194, 116919.	5.3	20
46	A novel fluorescent biosensor for Adenosine Triphosphate detection based on the polydopamine nanospheres integrating with enzymatic recycling amplification. Talanta, 2017, 169, 8-12.	2.9	19
47	A phase feature extraction technique for terahertz reflection spectroscopy. Applied Physics Letters, 2008, 92, 221106.	1.5	18
48	Design of one-to-one recognition triple Au nanoparticles DNA probe and its application in the electrochemical DNA biosensor. Chemical Communications, 2009, , 6958.	2.2	18
49	Investigation on the reaction of phenolic pollutions to mono-rhamnolipid micelles using MEUF. Environmental Science and Pollution Research, 2017, 24, 1230-1240.	2.7	17
50	Effect of rhamnolipids on cadmium adsorption by Penicillium simplicissimum. Journal of Central South University, 2012, 19, 1073-1080.	1.2	16
51	Effects of surfactants on enzyme-containing reversed micellar system. Science China Chemistry, 2011, 54, 715-723.	4.2	15
52	Transport of <i>Pseudomonas aeruginosa</i> in Porous Media Mediated by Low oncentration Surfactants: The Critical Role of Surfactant to Change Cell Surface Hydrophobicity. Water Resources Research, 2020, 56, e2019WR026103.	1.7	14
53	Modular design of an ultrahigh-intensity nanoparticle probe for cancer cell imaging and rapid visual detection of nucleic acids. Chemical Communications, 2012, 48, 6277.	2.2	12
54	Investigation of Fe(II) and Mn(II) involved anoxic denitrification in agricultural soils with high manganese and iron contents. Journal of Soils and Sediments, 2021, 21, 452-468.	1.5	10

#	Article	IF	CITATIONS
55	Testing the validity of the miscible-displacement interfacial tracer method for measuring air-water interfacial area: Independent benchmarking and mathematical modeling. Chemosphere, 2021, 263, 128193.	4.2	10
56	Reply for comment on "Adsorptive removal of methylene blue by rhamnolipid-functionalized graphene oxide from wastewater― Water Research, 2017, 108, 464-465.	5.3	8
57	Sub-CMC solubilization of n-alkanes by rhamnolipid biosurfactant: the Influence of rhamnolipid molecular structure. Colloids and Surfaces B: Biointerfaces, 2020, 192, 111049.	2.5	8
58	Fabrication of the tea saponin functionalized reduced graphene oxide for fast adsorptive removal of Cd(II) from water. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	1.1	7
59	Calcimimetic R568 improved cardiac remodeling by classic and novel renin-angiotensin system in spontaneously hypertensive rats. Experimental Biology and Medicine, 2019, 244, 789-801.	1.1	7
60	Static aerobic composting of municipal sewage sludge with forced ventilation: Using matured compost as bulking conditioner. Journal of Central South University, 2014, 21, 303-309.	1.2	6
61	Purification Effect of the Aquaculture Wastewater and Sediment by Microbial Nanospheres with Different Material Ratios and Dosing Methods. Sustainability, 2020, 12, 1462.	1.6	6
62	Migration and transformation of Sb are affected by Mn(III/IV) associated with lepidocrocite originating from Fe(II) oxidation. Journal of Environmental Sciences, 2022, 115, 308-318.	3.2	6
63	Production and characterization of biosurfactant from Bacillus subtilis CCTCC AB93108. Central South University, 2010, 17, 516-521.	0.5	5
64	Aerobic and anaerobic biodegradation of BDE-47 by bacteria isolated from an e-waste-contaminated site and the effect of various additives. Chemosphere, 2022, 294, 133739.	4.2	4
65	Assessing the Global Relationships Between Teleconnection Factors and Terrestrial Water Storage Components. Water Resources Management, 2022, 36, 119-133.	1.9	3
66	Alkane solubilization by surfactants: Aggregate view and size analysis based on cryo-TEM. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 642, 128589.	2.3	2
67	Solubilization of residual dodecane by surfactants in porous media: The relation between surfactant partition and solubilization. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 648, 129421.	2.3	1
68	Nonparaxial Accelerating Electron Beams. IEEE Journal of Quantum Electronics, 2017, 53, 1-6.	1.0	0