Joel P Schneider

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4504041/joel-p-schneider-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

137	10,832	58	103
papers	citations	h-index	g-index
146	11,687 ext. citations	9.8	6.37
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
137	Peptide hydrogels for affinity-controlled release of therapeutic cargo: Current and potential strategies. <i>Journal of Peptide Science</i> , 2021 , e3377	2.1	3
136	Dopamine Self-Polymerization as a Simple and Powerful Tool to Modulate the Viscoelastic Mechanical Properties of Peptide-Based Gels. <i>Molecules</i> , 2021 , 26,	4.8	5
135	Defining the Landscape of the Pauling-Corey Rippled Sheet: An Orphaned Motif Finding New Homes. <i>Accounts of Chemical Research</i> , 2021 , 54, 2488-2501	24.3	7
134	Structure-based non-nucleoside inhibitor design: Developing inhibitors that are effective against resistant mutants. <i>Chemical Biology and Drug Design</i> , 2021 , 97, 4-17	2.9	2
133	Serum Protein Adsorption Modulates the Toxicity of Highly Positively Charged Hydrogel Surfaces. <i>ACS Applied Materials & Distriction of Materials & Distriction (Materials & Distriction of Materials & Districtio</i>	9.5	7
132	Antibacterial Gel Coatings Inspired by the Cryptic Function of a Mussel Byssal Peptide. <i>Advanced Materials</i> , 2021 , 33, e2103677	24	9
131	Surface-fill hydrogel attenuates the oncogenic signature of complex anatomical surface cancer in a single application. <i>Nature Nanotechnology</i> , 2021 , 16, 1251-1259	28.7	8
130	From structure to application: Progress and opportunities in peptide materials development. <i>Current Opinion in Chemical Biology</i> , 2021 , 64, 131-144	9.7	4
129	National Cancer Institute (NCI) Program for Natural Products Discovery: Rapid Isolation and Identification of Biologically Active Natural Products from the NCI Prefractionated Library. <i>ACS Chemical Biology</i> , 2020 , 15, 1104-1114	4.9	17
128	Botryllamide G is an ABCG2 inhibitor that improves lapatinib delivery in mouse brain. <i>Cancer Biology and Therapy</i> , 2020 , 21, 223-230	4.6	5
127	Uncoupling the Folding-Function Paradigm of Lytic Peptides to Deliver Impermeable Inhibitors of Intracellular Protein-Protein Interactions. <i>Journal of the American Chemical Society</i> , 2020 , 142, 19950-19	9 9 54	6
126	Engineering and characterization of a pH-sensitive homodimeric antiparallel coiled coil. <i>Peptide Science</i> , 2020 , 112, e24180	3	О
125	Multiphase Assembly of Small Molecule Microcrystalline Peptide Hydrogel Allows Immunomodulatory Combination Therapy for Long-Term Heart Transplant Survival. <i>Small</i> , 2020 , 16, e20	00279	1 ⁷
124	The effect of turn residues on the folding and cell-penetrating activity of Ehairpin peptides and applications toward protein delivery. <i>Peptide Science</i> , 2020 , 112, e24125	3	2
123	New anti-IL-7REmonoclonal antibodies show efficacy against T cell acute lymphoblastic leukemia in pre-clinical models. <i>Leukemia</i> , 2020 , 34, 35-49	10.7	17
122	Utilizing Frfhy@Salt to Increase the Mechanical Rigidity of Supramolecular Peptide-Based Gel Networks. <i>Frontiers in Bioengineering and Biotechnology</i> , 2020 , 8, 594258	5.8	3
121	Design of a Peptide-Based Electronegative Hydrogel for the Direct Encapsulation, 3D Culturing, in Vivo Syringe-Based Delivery, and Long-Term Tissue Engraftment of Cells. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 34688-34697	9.5	30

120	De novo Design of Selective Membrane-Active Peptides by Enzymatic Control of Their Conformational Bias on the Cell Surface. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 13706-13	7464	19	
119	De novo Design of Selective Membrane-Active Peptides by Enzymatic Control of Their Conformational Bias on the Cell Surface. <i>Angewandte Chemie</i> , 2019 , 131, 13844-13848	3.6	5	
118	Electrostatically Driven Guanidinium Interaction Domains that Control Hydrogel-Mediated Protein Delivery In Vivo. <i>ACS Central Science</i> , 2019 , 5, 1750-1759	16.8	17	
117	Using Electron Microscopy to Enhance the Knowledge of Biological Systems. <i>Microscopy and Microanalysis</i> , 2019 , 25, 1164-1165	0.5		
116	Innentitelbild: De novo Design of Selective Membrane-Active Peptides by Enzymatic Control of Their Conformational Bias on the Cell Surface (Angew. Chem. 39/2019). <i>Angewandte Chemie</i> , 2019 , 131, 13734-13734	3.6		
115	Identification of a mechanogenetic link between substrate stiffness and chemotherapeutic response in breast cancer. <i>Biomaterials</i> , 2019 , 202, 1-11	15.6	26	
114	Dynamic protein folding at the surface of stimuli-responsive peptide fibrils. <i>Protein Science</i> , 2018 , 27, 1243-1251	6.3	5	
113	Macromolecule-Network Electrostatics Controlling Delivery of the Biotherapeutic Cell Modulator TIMP-2. <i>Biomacromolecules</i> , 2018 , 19, 1285-1293	6.9	7	
112	Enzymatic Control of the Conformational Landscape of Self-Assembling Peptides. <i>Angewandte Chemie</i> , 2018 , 130, 11358-11362	3.6	18	
111	Reactive astrocytic S1P3 signaling modulates the blood-tumor barrier in brain metastases. <i>Nature Communications</i> , 2018 , 9, 2705	17.4	62	
110	Enhanced Uptake of Luminescent Quantum Dots by Live Cells Mediated by a Membrane-Active Peptide. <i>ACS Omega</i> , 2018 , 3, 17164-17172	3.9	9	
109	Design of a Multicompartment Hydrogel that Facilitates Time-Resolved Delivery of Combination Therapy and Synergized Killing of Glioblastoma. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 15040-15044	16.4	64	
108	Design of a Multicompartment Hydrogel that Facilitates Time-Resolved Delivery of Combination Therapy and Synergized Killing of Glioblastoma. <i>Angewandte Chemie</i> , 2018 , 130, 15260-15264	3.6	15	
107	Intracellular Delivery of Gold Nanocolloids Promoted by a Chemically Conjugated Anticancer Peptide. <i>ACS Omega</i> , 2018 , 3, 12754-12762	3.9	13	
106	NCI Program for Natural Product Discovery: A Publicly-Accessible Library of Natural Product Fractions for High-Throughput Screening. <i>ACS Chemical Biology</i> , 2018 , 13, 2484-2497	4.9	58	
105	Enzymatic Control of the Conformational Landscape of Self-Assembling Peptides. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 11188-11192	16.4	46	
104	Glycan Alteration Imparts Cellular Resistance to a Membrane-Lytic Anticancer Peptide. <i>Cell Chemical Biology</i> , 2017 , 24, 149-158	8.2	18	
103	Chemical Ligations in the Design of Hydrogel Materials 2017 , 497-542		2	

102	Molecular, Local, and Network-Level Basis for the Enhanced Stiffness of Hydrogel Networks Formed from Coassembled Racemic Peptides: Predictions from Pauling and Corey. <i>ACS Central Science</i> , 2017 , 3, 586-597	16.8	80
101	Fluorous Phase-Directed Peptide Assembly Affords Nano-Peptisomes Capable of Ultrasound-Triggered Cellular Delivery. <i>Angewandte Chemie</i> , 2017 , 129, 11562-11566	3.6	6
100	Triggered Formation of Anionic Hydrogels from Self-Assembling Acidic Peptide Amphiphiles. <i>Macromolecules</i> , 2017 , 50, 5643-5651	5.5	15
99	Fluorous Phase-Directed Peptide Assembly Affords Nano-Peptisomes Capable of Ultrasound-Triggered Cellular Delivery. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 11404-114	40 ^{166.4}	27
98	Alkyl Amine Bevirimat Derivatives Are Potent and Broadly Active HIV-1 Maturation Inhibitors. <i>Antimicrobial Agents and Chemotherapy</i> , 2016 , 60, 190-7	5.9	34
97	An Intrinsically Disordered Peptide Facilitates Non-Endosomal Cell Entry. <i>Angewandte Chemie</i> , 2016 , 128, 3430-3433	3.6	6
96	Sustained release of active chemotherapeutics from injectable-solid Ehairpin peptide hydrogel. <i>Biomaterials Science</i> , 2016 , 4, 839-48	7.4	49
95	Protein release from highly charged peptide hydrogel networks. <i>Journal of Materials Chemistry B</i> , 2016 , 4, 1999-2007	7.3	30
94	A multiphase transitioning peptide hydrogel for suturing ultrasmall vessels. <i>Nature Nanotechnology</i> , 2016 , 11, 95-102	28.7	111
93	Blocking downstream signaling pathways in the context of HDAC inhibition promotes apoptosis preferentially in cells harboring mutant Ras. <i>Oncotarget</i> , 2016 , 7, 69804-69815	3.3	12
92	Fragmentation of Injectable Bioadhesive Hydrogels Affords Chemotherapeutic Macromolecules. <i>Biomacromolecules</i> , 2016 , 17, 2634-41	6.9	20
91	An Intrinsically Disordered Peptide Facilitates Non-Endosomal Cell Entry. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 3369-72	16.4	43
90	Rilpivirine and Doravirine Have Complementary Efficacies Against NNRTI-Resistant HIV-1 Mutants. Journal of Acquired Immune Deficiency Syndromes (1999), 2016, 72, 485-91	3.1	30
89	Influence of Hydrophobic Face Amino Acids on the Hydrogelation of -Hairpin Peptide Amphiphiles. <i>Macromolecules</i> , 2015 , 48, 1281-1288	5.5	37
88	Molecular structure of monomorphic peptide fibrils within a kinetically trapped hydrogel network. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 9816-21	11.5	93
87	Cancer cell surface induced peptide folding allows intracellular translocation of drug. <i>Journal of Controlled Release</i> , 2015 , 209, 317-26	11.7	22
86	Enhanced immunostimulatory effects of DNA-encapsulated peptide hydrogels. <i>Biomaterials</i> , 2015 , 53, 545-53	15.6	40
85	Beta Hairpin Peptide Hydrogels as an Injectable Solid Vehicle for Neurotrophic Growth Factor Delivery. <i>Biomacromolecules</i> , 2015 , 16, 2672-83	6.9	58

(2011-2015)

84	Rheology of peptide- and protein-based physical hydrogels: are everyday measurements just scratching the surface?. <i>Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology</i> , 2015 , 7, 34-68	9.2	66	
83	Design of self-assembling peptide hydrogelators amenable to bacterial expression. <i>Biomaterials</i> , 2015 , 37, 62-72	15.6	17	
82	Engineering complementary hydrophobic interactions to control Ehairpin peptide self-assembly, network branching, and hydrogel properties. <i>Biomacromolecules</i> , 2014 , 15, 3891-900	6.9	46	
81	Injectable bioadhesive hydrogels with innate antibacterial properties. <i>Nature Communications</i> , 2014 , 5, 4095	17.4	211	
80	The small molecule NSC676914A is cytotoxic and differentially affects NFB signaling in ovarian cancer cells and HEK293 cells. <i>Cancer Cell International</i> , 2014 , 14, 75	6.4	4	
79	Antimicrobial hydrogels for the treatment of infection. <i>Biopolymers</i> , 2013 , 100, 637-44	2.2	139	
78	Mechanism of membrane permeation induced by synthetic Ehairpin peptides. <i>Biophysical Journal</i> , 2013 , 105, 2093-103	2.9	31	
77	Evolution-Based Design of an Injectable Hydrogel. Advanced Functional Materials, 2012, 22, 529-537	15.6	64	
76	Anticancer peptide SVS-1: efficacy precedes membrane neutralization. <i>Biochemistry</i> , 2012 , 51, 6263-5	3.2	45	
75	Injectable solid peptide hydrogel as a cell carrier: effects of shear flow on hydrogels and cell payload. <i>Langmuir</i> , 2012 , 28, 6076-87	4	115	
74	Iterative design of peptide-based hydrogels and the effect of network electrostatics on primary chondrocyte behavior. <i>Biomaterials</i> , 2012 , 33, 7478-88	15.6	39	
73	A comparison of the ability of rilpivirine (TMC278) and selected analogues to inhibit clinically relevant HIV-1 reverse transcriptase mutants. <i>Retrovirology</i> , 2012 , 9, 99	3.6	27	
72	Arginine-rich self-assembling peptides as potent antibacterial gels. <i>Biomaterials</i> , 2012 , 33, 8907-16	15.6	168	
71	Heavy metal ion hydrogelation of a self-assembling peptideviacysteinyl chelation. <i>Journal of Materials Chemistry</i> , 2012 , 22, 1352-1357		59	
70	Anticancer Ehairpin peptides: membrane-induced folding triggers activity. <i>Journal of the American Chemical Society</i> , 2012 , 134, 6210-7	16.4	128	
69	Enhanced stereoselectivity of a Cu(II) complex chiral auxiliary in the synthesis of Fmoc-L-Etarboxyglutamic acid. <i>Journal of Organic Chemistry</i> , 2011 , 76, 1513-20	4.2	15	
68	Enhanced mechanical rigidity of hydrogels formed from enantiomeric peptide assemblies. <i>Journal of the American Chemical Society</i> , 2011 , 133, 14975-7	16.4	146	
67	Zinc-Triggered Hydrogelation of a Self-Assembling EHairpin Peptide. <i>Angewandte Chemie</i> , 2011 , 123, 1615-1617	3.6	32	

66	Zinc-triggered hydrogelation of a self-assembling Ehairpin peptide. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 1577-9	16.4	115
65	Materials from peptide assembly: towards the treatment of cancer and transmittable disease. <i>Current Opinion in Chemical Biology</i> , 2011 , 15, 427-34	9.7	62
64	Encapsulation of curcumin in self-assembling peptide hydrogels as injectable drug delivery vehicles. <i>Biomaterials</i> , 2011 , 32, 5906-14	15.6	368
63	Controlled biodegradation of self-assembling Enairpin peptide hydrogels by proteolysis with matrix metalloproteinase-13. <i>Biomaterials</i> , 2011 , 32, 6471-7	15.6	81
62	De Novo Design of a Shear-Thin Recoverable Peptide-Based Hydrogel Capable of Intrafibrillar Photopolymerization. <i>Macromolecules</i> , 2010 , 43, 7924-7930	5.5	46
61	Peptidesilica hybrid networks: biomimetic control of network mechanical behavior. <i>ACS Nano</i> , 2010 , 4, 181-8	16.7	62
60	Injectable solid hydrogel: mechanism of shear-thinning and immediate recovery of injectable Ehairpin peptide hydrogels. <i>Soft Matter</i> , 2010 , 6, 5143-5156	3.6	257
59	Domain swapping in materials design. <i>Biopolymers</i> , 2010 , 94, 141-55	2.2	34
58	Self assembled bi-functional peptide hydrogels with biomineralization-directing peptides. <i>Biomaterials</i> , 2010 , 31, 7266-74	15.6	83
57	The effect of protein structure on their controlled release from an injectable peptide hydrogel. <i>Biomaterials</i> , 2010 , 31, 9527-34	15.6	140
56	Inherently Antibacterial Hydrogels: Altering Activity via Tryptophan/Arginine Interactions. <i>FASEB Journal</i> , 2010 , 24, 521.3	0.9	
55	Design of an Injectable Hairpin Peptide Hydrogel That Kills Methicillin-Resistant Staphylococcus aureus. <i>Advanced Materials</i> , 2009 , 21, 4120-4123	24	139
54	Self-assembling materials for therapeutic delivery. <i>Acta Biomaterialia</i> , 2009 , 5, 817-31	10.8	388
53	Macromolecular diffusion and release from self-assembled beta-hairpin peptide hydrogels. <i>Biomaterials</i> , 2009 , 30, 1339-47	15.6	187
52	Folding, self-assembly, and bulk material properties of a de novo designed three-stranded beta-sheet hydrogel. <i>Biomacromolecules</i> , 2009 , 10, 1295-304	6.9	72
51	Tuning the pH responsiveness of beta-hairpin peptide folding, self-assembly, and hydrogel material formation. <i>Biomacromolecules</i> , 2009 , 10, 2619-25	6.9	149
50	Dependence of Self-Assembled Peptide Hydrogel Network Structure on Local Fibril Nanostructure. <i>Macromolecules</i> , 2009 , 42, 7137-7145	5.5	76
49	Arsenic(III) species inhibit oxidative protein folding in vitro. <i>Biochemistry</i> , 2009 , 48, 424-32	3.2	72

(2007-2009)

48	Fast dynamics of semiflexible chain networks of self-assembled peptides. <i>Biomacromolecules</i> , 2009 , 10, 1374-80	6.9	60
47	Sequence-dependent gelation kinetics of Ehairpin peptide hydrogels. <i>Macromolecules</i> , 2009 , 42, 8443-8	45 <u>0</u>	47
46	Inherently Antibacterial Hydrogels: Altering Activity via Tryptophan/Arginine Interactions. <i>FASEB Journal</i> , 2009 , 23, 863.14	0.9	
45	De novo design of strand-swapped beta-hairpin hydrogels. <i>Journal of the American Chemical Society</i> , 2008 , 130, 4466-74	16.4	124
44	Correlations between structure, material properties and bioproperties in self-assembled beta-hairpin peptide hydrogels. <i>Faraday Discussions</i> , 2008 , 139, 251-64; discussion 309-25, 419-20	3.6	104
43	Direct Observation of Early-Time Hydrogelation in beta-Hairpin Peptide Self-Assembly. <i>Macromolecules</i> , 2008 , 41, 5763-5772	5.5	74
42	Molecular Design of beta-Hairpin Peptides for Material Construction. MRS Bulletin, 2008, 33, 530-535	3.2	57
41	Microrheology of Responsive Hydrogel Networks. AIP Conference Proceedings, 2008,	Ο	4
40	In vitro assessment of the pro-inflammatory potential of beta-hairpin peptide hydrogels. <i>Biomaterials</i> , 2008 , 29, 4164-9	15.6	52
39	Laterally Spaced Linear Nanoparticle Arrays Templated by Laminated Esheet Fibrils. <i>Advanced Materials</i> , 2008 , 20, 447-451	24	65
38	Metal-triggered hydrogelation of self-assembling Ehairpin peptides for bioremediation. <i>FASEB Journal</i> , 2008 , 22, 1010.1	0.9	
37	Bulk Material Properties of Beta B ulge Peptide Hydrogels For Tissue Engineering. <i>FASEB Journal</i> , 2008 , 22, 1005.1	0.9	
36	Synthesis and primary characterization of self-assembled peptide-based hydrogels. <i>Methods in Molecular Biology</i> , 2008 , 474, 61-77	1.4	28
35	Effects of As(III) binding on beta-hairpin structure. <i>Journal of the American Chemical Society</i> , 2007 , 129, 2981-8	16.4	36
34	Inherent antibacterial activity of a peptide-based beta-hairpin hydrogel. <i>Journal of the American Chemical Society</i> , 2007 , 129, 14793-9	16.4	276
33	Reversible stiffening transition in beta-hairpin hydrogels induced by ion complexation. <i>Journal of Physical Chemistry B</i> , 2007 , 111, 13901-8	3.4	35
32	Hydroxyapatite surface-induced peptide folding. <i>Journal of the American Chemical Society</i> , 2007 , 129, 5281-7	16.4	70
31	Controlling hydrogelation kinetics by peptide design for three-dimensional encapsulation and injectable delivery of cells. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 7791-6	11.5	545

30	Probing the importance of lateral hydrophobic association in self-assembling peptide hydrogelators. <i>European Biophysics Journal</i> , 2006 , 35, 162-9	1.9	73
29	Gelation Kinetics of Hairpin Peptide Hydrogel Networks. <i>Macromolecules</i> , 2006 , 39, 6608-6614	5.5	94
28	Hydrogels Constructed via EHairpin Peptide Self-Assembly. ACS Symposium Series, 2006, 284-297	0.4	2
27	Unnatural multidentate metal ligating Hamino acids. <i>Tetrahedron Letters</i> , 2006 , 47, 6277-6280	2	16
26	"Click" chemistry in a supramolecular environment: stabilization of organogels by copper(I)-catalyzed azide-alkyne [3 + 2] cycloaddition. <i>Journal of the American Chemical Society</i> , 2006 , 128, 6056-7	16.4	128
25	Laminated morphology of nontwisting beta-sheet fibrils constructed via peptide self-assembly. Journal of the American Chemical Society, 2005 , 127, 16692-700	16.4	170
24	Light-activated hydrogel formation via the triggered folding and self-assembly of a designed peptide. <i>Journal of the American Chemical Society</i> , 2005 , 127, 17025-9	16.4	319
23	Cytocompatibility of self-assembled beta-hairpin peptide hydrogel surfaces. <i>Biomaterials</i> , 2005 , 26, 517	77-86	241
22	Semiflexible chain networks formed via self-assembly of beta-hairpin molecules. <i>Physical Review Letters</i> , 2004 , 93, 268106	7.4	104
21	Self-assembling peptides and proteins for nanotechnological applications. <i>Current Opinion in Structural Biology</i> , 2004 , 14, 480-6	8.1	394
20	Structure-based design of a fluorimetric redox active peptide probe. <i>Analytical Biochemistry</i> , 2004 , 325, 144-50	3.1	15
19	General method for facile intramolecular disulfide formation in synthetic peptides. <i>Analytical Biochemistry</i> , 2004 , 335, 168-70	3.1	17
18	De novo designed peptidic redox potential probe: linking sensitized emission to disulfide bond formation. <i>Journal of the American Chemical Society</i> , 2004 , 126, 13616-7	16.4	44
17	Salt-Triggered Peptide Folding and Consequent Self-Assembly into Hydrogels with Tunable Modulus. <i>Macromolecules</i> , 2004 , 37, 7331-7337	5.5	339
16	Design and application of basic amino acids displaying enhanced hydrophobicity. <i>Journal of the American Chemical Society</i> , 2003 , 125, 7907-13	16.4	38
15	Effects of As(III) binding on alpha-helical structure. <i>Journal of the American Chemical Society</i> , 2003 , 125, 2923-9	16.4	70
14	Thermally reversible hydrogels via intramolecular folding and consequent self-assembly of a de novo designed peptide. <i>Journal of the American Chemical Society</i> , 2003 , 125, 11802-3	16.4	385
13	Responsive hydrogels from the intramolecular folding and self-assembly of a designed peptide. Journal of the American Chemical Society, 2002 , 124, 15030-7	16.4	743

LIST OF PUBLICATIONS

Conformational Uniqueness via Designed Ion Pairs **2001**, 438-439

11	One-pot conversion of benzyl carbamates into fluorenylmethyl carbamates. <i>Tetrahedron Letters</i> , 2000 , 41, 9953-9956	2	8
10	Transition state heterogeneity in GCN4 coiled coil folding studied by using multisite mutations and crosslinking. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1999 , 96, 10699-704	11.5	102
9	De Novo Design of Antibacterial Peptides. Journal of the American Chemical Society, 1999 , 121, 12200-	128 <u>0</u> 1	325
8	Analysis and design of three-stranded coiled coils and three-helix bundles. <i>Folding & Design</i> , 1998 , 3, R29-40		52
7	The Design of Efficient ⊞elical C-Capping Auxiliaries. <i>Journal of the American Chemical Society</i> , 1998 , 120, 2764-2767	16.4	30
6	A Designed Buried Salt Bridge in a Heterodimeric Coiled Coil. <i>Journal of the American Chemical Society</i> , 1997 , 119, 5742-5743	16.4	67
5	Electrostatic Effects on Ion Selectivity and Rectification in Designed Ion Channel Peptides. <i>Journal of the American Chemical Society</i> , 1997 , 119, 3212-3217	16.4	73
4	Nucleated Antiparallel Esheet That Folds and Undergoes Self-Assembly: A Template Promoted Folding Strategy toward Controlled Molecular Architectures. <i>Macromolecules</i> , 1996 , 29, 355-366	5.5	60
3	Synthesis and Efficacy of Square Planar Copper Complexes Designed to Nucleate .betaSheet Structure. <i>Journal of the American Chemical Society</i> , 1995 , 117, 2533-2546	16.4	111
2	Templates That Induce .alphaHelical, .betaSheet, and Loop Conformations. <i>Chemical Reviews</i> , 1995 , 95, 2169-2187	68.1	317
1	A Convenient Synthesis of 6,6?-Diamino-2,2?-Bipyridine. <i>Synthetic Communications</i> , 1992 , 22, 1033-1037	1.7	6