
## Jolanta Opacka-Juffry

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4504005/publications.pdf

Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Using Computational and Neurobiological Methods to Characterise the Stimulant Properties of Novel<br>Psychoactive Substances (NPS) at the Dopamine Transporter. Biophysical Journal, 2021, 120, 123a.                                                    | 0.2 | Ο         |
| 2  | Region- and receptor-specific effects of chronic social stress on the central serotonergic system in mice. IBRO Neuroscience Reports, 2021, 10, 8-16.                                                                                                    | 0.7 | 8         |
| 3  | Molecular Mechanisms of Action of Stimulant Novel Psychoactive Substances (NPS) that target the<br>High-affinity Transporter for Dopamine. Neuronal Signaling, 2021, 5, NS20210006.                                                                      | 1.7 | 3         |
| 4  | Chronic social stress in mice alters energy status including higher glucose need but lower brain utilization. Psychoneuroendocrinology, 2020, 119, 104747.                                                                                               | 1.3 | 19        |
| 5  | The Role of Dopamine in the Stimulant Characteristics of Novel Psychoactive Substances<br>(NPS)—Neurobiological and Computational Assessment Using the Case of Desoxypipradrol (2-DPMP).<br>Frontiers in Pharmacology, 2020, 11, 806.                    | 1.6 | 6         |
| 6  | Chronic social stress induces peripheral and central immune activation, blunted mesolimbic dopamine function, and reduced reward-directed behaviour in mice. Neurobiology of Stress, 2018, 8, 42-56.                                                     | 1.9 | 56        |
| 7  | Mechanistic Insights into the Stimulant Properties of Novel Psychoactive Substances (NPS) and Their<br>Discrimination by the Dopamine Transporter—In Silico and In Vitro Exploration of Dissociative<br>Diarylethylamines. Brain Sciences, 2018, 8, 63.  | 1.1 | 15        |
| 8  | Combined in Vitro and in Silico Approaches to the Assessment of Stimulant Properties of Novel<br>Psychoactive Substances. Biophysical Journal, 2017, 112, 338a-339a.                                                                                     | 0.2 | 0         |
| 9  | Spicing Up Pharmacology: A Review of Synthetic Cannabinoids From Structure to Adverse Events.<br>Advances in Pharmacology, 2017, 80, 135-168.                                                                                                            | 1.2 | 40        |
| 10 | Combined in vitro and in silico approaches to the assessment of stimulant properties of novel psychoactive substances – The case of the benzofuran 5-MAPB. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2017, 75, 1-9.                | 2.5 | 17        |
| 11 | Electroencephalography (EEG) Measures of Neural Connectivity in the Assessment of Brain Responses<br>to Salient Auditory Stimuli in Patients with Disorders of Consciousness. Frontiers in Psychology,<br>2016, 7, 397.                                  | 1.1 | 19        |
| 12 | Astroglial Plasticity Is Implicated in Hippocampal Remodelling in Adult Rats Exposed to Antenatal<br>Dexamethasone. Neural Plasticity, 2015, 2015, 1-8.                                                                                                  | 1.0 | 7         |
| 13 | Disentangling the link between depressive symptoms and plasma oxytocin in men: The role of brooding rumination. Hormones and Behavior, 2015, 75, 142-149.                                                                                                | 1.0 | 4         |
| 14 | Emotional suppression explains the link between early life stress and plasma oxytocin. Anxiety, Stress and Coping, 2014, 27, 466-475.                                                                                                                    | 1.7 | 21        |
| 15 | Stimulant mechanisms of cathinones — Effects of mephedrone and other cathinones on basal and<br>electrically evoked dopamine efflux in rat accumbens brain slices. Progress in<br>Neuro-Psychopharmacology and Biological Psychiatry, 2014, 54, 122-130. | 2.5 | 19        |
| 16 | The effects of benzofury (5-APB) on the dopamine transporter and 5-HT2-dependent vasoconstriction in the rat. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2014, 48, 57-63.                                                           | 2.5 | 50        |
| 17 | Psychometric and neurobiological assessment of resilience in a non-clinical sample of adults.<br>Psychoneuroendocrinology, 2013, 38, 2099-2108.                                                                                                          | 1.3 | 37        |
| 18 | Experience of stress in childhood negatively correlates with plasma oxytocin concentration in adult men. Stress, 2012, 15, 1-10.                                                                                                                         | 0.8 | 101       |

JOLANTA OPACKA-JUFFRY

| #  | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | In vivo dopaminergic and behavioral responses to acute cocaine are altered in adenosine<br>A <sub>2A</sub> receptor knockout mice. Synapse, 2012, 66, 383-390.                                                            | 0.6 | 12        |
| 20 | Early deprivation leads to long-term reductions in motivation for reward and 5-HT1A binding and both effects are reversed by fluoxetine. Neuropharmacology, 2009, 56, 692-701.                                            | 2.0 | 67        |
| 21 | Behavioural and biochemical responses to morphine associated with its motivational properties are<br>altered in adenosine A <sub>2A</sub> receptor knockout mice. British Journal of Pharmacology, 2008,<br>155, 757-766. | 2.7 | 22        |
| 22 | The role of serotonin as a neurotransmitter in health and illness: A review. British Journal of Neuroscience Nursing, 2008, 4, 272-277.                                                                                   | 0.1 | 1         |
| 23 | Long-term effects of early life deprivation on brain glia in Fischer rats. Brain Research, 2007, 1142, 119-126.                                                                                                           | 1.1 | 114       |
| 24 | Modulatory Effects of Levodopa on D2 Dopamine Receptors in Striatum Assessed Using In Vivo Microdialysis and PET. , 2005, , 261-275.                                                                                      |     | 0         |
| 25 | Regulation of rat pituitary cocaine- and amphetamine-regulated transcript (CART) by CRH and glucocorticoids. American Journal of Physiology - Endocrinology and Metabolism, 2004, 287, E583-E590.                         | 1.8 | 52        |
| 26 | Effect of 5-HT on binding of [11C] WAY 100635 to 5-HT1A receptors in rat brain, assessed using in vivo microdialysis and PET after fenfluramine. Synapse, 2001, 41, 150-159.                                              | 0.6 | 80        |
| 27 | Evaluation of [4-O-methyl-11C]KW-6002 as a potential PET ligand for mapping central adenosine A2A receptors in rats. Synapse, 2001, 42, 164-176.                                                                          | 0.6 | 42        |
| 28 | Small Animal PET Enables Parametric Mapping of Saturation Kinetics at the 5-HT1A Receptor. , 2001, , 171-176.                                                                                                             |     | 2         |
| 29 | Pindolol occupancy of 5-HT1A receptors measured in vivo using small animal positron emission tomography with carbon-11 labeled WAY 100635. , 2000, 36, 330-341.                                                           |     | 43        |
| 30 | Evaluation of [ O-methyl - 11 C]RS-15385-197 as a positron emission tomography radioligand for central α<br>2 -adrenoceptors. European Journal of Nuclear Medicine and Molecular Imaging, 2000, 27, 475-484.              | 3.3 | 20        |
| 31 | Neuroprotective effects of growth/differentiation factor 5 depend on the site of administration.<br>Brain Research, 1999, 818, 176-179.                                                                                   | 1.1 | 29        |
| 32 | Distribution and quantification of immunoreactive orexin A in rat tissues. FEBS Letters, 1999, 457, 157-161.                                                                                                              | 1.3 | 156       |
| 33 | Effects of pergolide treatment on in vivo hydroxyl free radical formation during infusion of 6-hydroxydopamine in rat striatum. Brain Research, 1998, 810, 27-33.                                                         | 1.1 | 27        |
| 34 | Modulatory effects of L-DOPA on D2 dopamine receptors in rat striatum, measured using in vivo microdialysis and PET. Journal of Neural Transmission, 1998, 105, 349.                                                      | 1.4 | 26        |
| 35 | Longâ€ŧerm protection of the rat nigrostriatal dopaminergic system by glial cell lineâ€derived<br>neurotrophic factor against 6â€hydroxydopamine in vivo. European Journal of Neuroscience, 1998, 10,<br>57-63.           | 1.2 | 85        |
| 36 | Growth/differentiation factor 5 protects nigrostriatal dopaminergic neurones in a rat model of<br>Parkinson's disease. Neuroscience Letters, 1997, 233, 73-76.                                                            | 1.0 | 50        |

JOLANTA OPACKA-JUFFRY

| #  | Article                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Development of central 5-HT2A receptor radioligands for PET: Comparison of [3H]RP 62203 and [3H]SR 46349B kinetics in rat brain. Nuclear Medicine and Biology, 1996, 23, 245-250.                                                               | 0.3 | 12        |
| 38 | Evaluation of [11C]RTI-121 as a selective radioligand for PET studies of the dopamine transporter.<br>Nuclear Medicine and Biology, 1996, 23, 377-384.                                                                                          | 0.3 | 17        |
| 39 | Evaluation in rat of RS-79948-197 as a potential PET ligand for central α2-adrenoceptors. European<br>Journal of Pharmacology, 1996, 317, 67-73.                                                                                                | 1.7 | 28        |
| 40 | Lack of permanent nigrostriatal dopamine deficit following 6-hydroxydopamine injection into the rat<br>striatum. Journal of Neural Transmission, 1996, 103, 1429-1434.                                                                          | 1.4 | 10        |
| 41 | Assessment of striatal graft viability in the rat in vivo using a small diameter PET scanner.<br>NeuroReport, 1995, 6, 2017-2021.                                                                                                               | 0.6 | 51        |
| 42 | L-Dihydroxyphenylalanine and its decarboxylase: New ideas on their neuroregulatory roles. Movement<br>Disorders, 1995, 10, 241-249.                                                                                                             | 2.2 | 52        |
| 43 | Effect of L-dopa and 6-hydroxydopamine lesioning on [11C]raclopride binding in rat striatum, quantified using PET. Synapse, 1995, 21, 45-53.                                                                                                    | 0.6 | 91        |
| 44 | Preclinical Development of a Radioligand for the Study of Central 5-HT1A Receptors with PET —<br>[11C]Way-100635. , 1995, , 93-108.                                                                                                             |     | 1         |
| 45 | GDNF protects against 6-OHDA nigrostriatal lesion. NeuroReport, 1995, 7, 348-352.                                                                                                                                                               | 0.6 | 60        |
| 46 | Evaluation of [O-methyl-3H]WAY-100635 as an in vivo radioligand for 5-HT1A receptors in rat brain.<br>European Journal of Pharmacology, 1994, 271, 515-523.                                                                                     | 1.7 | 69        |
| 47 | Quantitation of Carbon-11-labeled raclopride in rat striatum using positron emission tomography.<br>Synapse, 1992, 12, 47-54.                                                                                                                   | 0.6 | 198       |
| 48 | Catecholamine synthesis inhibitors increase pineal adrenaline content by stimulating adrenal medullary activity. Neuroscience, 1991, 42, 291-297.                                                                                               | 1.1 | 5         |
| 49 | Nomifensine-induced increased in extracellular striatal dopamine is enhanced by isoflurane<br>anaesthesia. Synapse, 1991, 7, 169-171.                                                                                                           | 0.6 | 70        |
| 50 | Coexistence of Gonadotrophin-Releasing Hormone and Galanin: Immunohisto-chemical and Functional<br>Studies. Journal of Neuroendocrinology, 1990, 2, 107-111.                                                                                    | 1.2 | 63        |
| 51 | Sensitive method for determination of picogram amounts of epinephrine and other catecholamines in microdissected samples of rat brain using liquid chromatography with electrochemical detection.<br>Biomedical Applications, 1988, 433, 41-51. | 1.7 | 18        |
| 52 | Behind a Great Drug There Is a Great Scientist: The Discovery of a Treatment for Parkinson's Disease.<br>Frontiers for Young Minds, 0, 8, .                                                                                                     | 0.8 | 0         |