Michael Y Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4503727/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Impact of Quarantine and Medical Resources on the Control of COVID-19 in Wuhan based on a Household Model. Bulletin of Mathematical Biology, 2022, 84, 47.	1.9	3
2	On the basic reproduction number in semi-Markov switching networks. Journal of Biological Dynamics, 2021, 15, 73-85.	1.7	1
3	Modeling Rabies Transmission in Spatially Heterogeneous Environments via \$\$heta \$\$-diffusion. Bulletin of Mathematical Biology, 2021, 83, 16.	1.9	4
4	Nonpharmaceutical interventions contribute to the control of COVID-19 in China based on a pairwise model. Infectious Disease Modelling, 2021, 6, 643-663.	1.9	9
5	Modeling the Effects of Latency Reversing Drugs During HIV-1 and SIV Brain Infection with Implications for the "Shock and Kill―Strategy. Bulletin of Mathematical Biology, 2021, 83, 39.	1.9	5
6	Epidemic models with discrete state structures. Physica D: Nonlinear Phenomena, 2021, 422, 132903.	2.8	8
7	Backward bifurcation and sensitivity analysis for bacterial meningitis transmission dynamics with a nonlinear recovery rate. Chaos, Solitons and Fractals, 2020, 140, 110237.	5.1	35
8	Why is it difficult to accurately predict the COVID-19 epidemic?. Infectious Disease Modelling, 2020, 5, 271-281.	1.9	467
9	RO and sensitivity analysis of a predator-prey model with seasonality and maturation delay. Mathematical Biosciences, 2019, 315, 108225.	1.9	10
10	Global dynamics of a discrete age-structured SIR epidemic model with applications to measles vaccination strategies. Mathematical Biosciences, 2019, 308, 27-37.	1.9	48
11	Large-Scale Epidemic Models and a Graph-Theoretic Method for Constructing Lyapunov Functions. Mathematics of Planet Earth, 2019, , 63-98.	0.1	О
12	Global dynamics of an infinite dimensional epidemic model with nonlocal state structures. Journal of Differential Equations, 2018, 265, 5262-5296.	2.2	16
13	Modeling brain lentiviral infections during antiretroviral therapy in AIDS. Journal of NeuroVirology, 2017, 23, 577-586.	2.1	7
14	Global Hopf Bifurcation Analysis of a Nicholson's Blowflies Equation of Neutral Type. Journal of Dynamics and Differential Equations, 2014, 26, 165-179.	1.9	7
15	Impact of network connectivity on the synchronization and global dynamics of coupled systems of differential equations. Physica D: Nonlinear Phenomena, 2014, 286-287, 32-42.	2.8	34
16	Backward bifurcation in a mathematical model for HIV infection in vivo with anti-retroviral treatment. Nonlinear Analysis: Real World Applications, 2014, 17, 147-160.	1.7	49
17	Global Hopf branches and multiple limit cycles in a delayed Lotka-Volterra predator-prey model. Discrete and Continuous Dynamical Systems - Series B, 2014, 19, 747-760.	0.9	6
18	Global Lyapunov functions and a hierarchical control scheme for networks of robotic agents. , 2013, ,		4

MICHAEL Y LI

#	Article	IF	CITATIONS
19	Global Dynamics of a General Class of Multistage Models for Infectious Diseases. SIAM Journal on Applied Mathematics, 2012, 72, 261-279.	1.8	81
20	Joint effects of mitosis and intracellular delay on viral dynamics: two-parameter bifurcation analysis. Journal of Mathematical Biology, 2012, 64, 1005-1020.	1.9	49
21	Stable and transient periodic oscillations in a mathematical model for CTL response to HTLV-I infection. Journal of Mathematical Biology, 2012, 65, 181-199.	1.9	36
22	Global dynamics of a mathematical model for HTLV-I infection of CD4+ T cells with delayed CTL response. Nonlinear Analysis: Real World Applications, 2012, 13, 1080-1092.	1.7	102
23	Global dynamics of a staged-progression model for HIV/AIDS with amelioration. Nonlinear Analysis: Real World Applications, 2011, 12, 2529-2540.	1.7	13
24	Multiple Stable Periodic Oscillations in a Mathematical Model of CTL Response to HTLV-I Infection. Bulletin of Mathematical Biology, 2011, 73, 1774-1793.	1.9	83
25	Modelling the Role of Tax Expression in HTLV-I Persistence in vivo. Bulletin of Mathematical Biology, 2011, 73, 3008-3029.	1.9	33
26	Modeling the effects of carriers on transmission dynamics of infectious diseases. Mathematical Biosciences and Engineering, 2011, 8, 711-722.	1.9	31
27	Global stability of multi-group epidemic models with distributed delays. Journal of Mathematical Analysis and Applications, 2010, 361, 38-47.	1.0	171
28	Multistability in a Model for CTL Response to HTLV-I Infection and Its Implications to HAM/TSP Development and Prevention. Bulletin of Mathematical Biology, 2010, 72, 681-696.	1.9	53
29	Global Dynamics of an In-host Viral Model withÂIntracellular Delay. Bulletin of Mathematical Biology, 2010, 72, 1492-1505.	1.9	135
30	Impact of Intracellular Delays and Target-Cell Dynamics on In Vivo Viral Infections. SIAM Journal on Applied Mathematics, 2010, 70, 2434-2448.	1.8	124
31	Global-stability problem for coupled systems of differential equations on networks. Journal of Differential Equations, 2010, 248, 1-20.	2.2	661
32	Global dynamics of a staged-progression model with amelioration for infectious diseases. Journal of Biological Dynamics, 2008, 2, 154-168.	1.7	30
33	A graph-theoretic approach to the method of global Lyapunov functions. Proceedings of the American Mathematical Society, 2008, 136, 2793-2802.	0.8	286
34	Mathematical analysis of the global dynamics of a model for HIV infection of CD4+ T cells. Mathematical Biosciences, 2006, 200, 44-57.	1.9	244
35	Global dynamics of a staged progression model for infectious diseases. Mathematical Biosciences and Engineering, 2006, 3, 513-525.	1.9	80
36	Hopf bifurcation analysis in a delayed Nicholson blowflies equation. Nonlinear Analysis: Theory, Methods & Applications, 2005, 60, 1351-1367.	1.1	113

MICHAEL Y LI

#	Article	IF	CITATIONS
37	Backward bifurcation in a model for HTLV-I infection of CD4 T cells. Bulletin of Mathematical Biology, 2005, 67, 101-114.	1.9	72
38	Global existence of periodic solutions in a tri-neuron network model with delays. Physica D: Nonlinear Phenomena, 2004, 198, 106-119.	2.8	91
39	Mathematical analysis of the global dynamics of a model for HTLV-I infection and ATL progression. Mathematical Biosciences, 2002, 179, 207-217.	1.9	70
40	Global Dynamics of an SEIR Epidemic Model with Vertical Transmission. SIAM Journal on Applied Mathematics, 2001, 62, 58-69.	1.8	255
41	Global stability of an SEIS epidemic model with recruitment and a varying total population size. Mathematical Biosciences, 2001, 170, 199-208.	1.9	115
42	Global dynamics of a SEIR model with varying total population size. Mathematical Biosciences, 1999, 160, 191-213.	1.9	512
43	A Criterion for Stability of Matrices. Journal of Mathematical Analysis and Applications, 1998, 225, 249-264.	1.0	67
44	A Geometric Approach to Global-Stability Problems. SIAM Journal on Mathematical Analysis, 1996, 27, 1070-1083.	1.9	475
45	On R.A. Smith's Autonomous Convergence Theorem. Rocky Mountain Journal of Mathematics, 1995, 25, 365.	0.4	97
46	Global stability for the SEIR model in epidemiology. Mathematical Biosciences, 1995, 125, 155-164.	1.9	614