
Erin A Mordecai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4503440/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Parasites in food webs: the ultimate missing links. Ecology Letters, 2008, 11, 533-546.	6.4	716
2	Global expansion and redistribution of Aedes-borne virus transmission risk with climate change. PLoS Neglected Tropical Diseases, 2019, 13, e0007213.	3.0	484
3	Optimal temperature for malaria transmission is dramatically lower than previously predicted. Ecology Letters, 2013, 16, 22-30.	6.4	466
4	Detecting the impact of temperature on transmission of Zika, dengue, and chikungunya using mechanistic models. PLoS Neglected Tropical Diseases, 2017, 11, e0005568.	3.0	430
5	Thermal biology of mosquitoâ€borne disease. Ecology Letters, 2019, 22, 1690-1708.	6.4	349
6	Pathogen impacts on plant communities: unifying theory, concepts, and empirical work. Ecological Monographs, 2011, 81, 429-441.	5.4	224
7	Towards common ground in the biodiversity–disease debate. Nature Ecology and Evolution, 2020, 4, 24-33.	7.8	170
8	Climate change could shift disease burden from malaria to arboviruses in Africa. Lancet Planetary Health, The, 2020, 4, e416-e423.	11.4	163
9	Temperature drives Zika virus transmission: evidence from empirical and mathematical models. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20180795.	2.6	151
10	Mapping Physiological Suitability Limits for Malaria in Africa Under Climate Change. Vector-Borne and Zoonotic Diseases, 2015, 15, 718-725.	1.5	136
11	An open challenge to advance probabilistic forecasting for dengue epidemics. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24268-24274.	7.1	136
12	The community ecology of pathogens: coinfection, coexistence and community composition. Ecology Letters, 2015, 18, 401-415.	6.4	135
13	Amazon deforestation drives malaria transmission, and malaria burden reduces forest clearing. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 22212-22218.	7.1	134
14	Environmental and Social Change Drive the Explosive Emergence of Zika Virus in the Americas. PLoS Neglected Tropical Diseases, 2017, 11, e0005135.	3.0	118
15	Understanding uncertainty in temperature effects on vectorâ€borne disease: a Bayesian approach. Ecology, 2015, 96, 203-213.	3.2	98
16	Seasonal temperature variation influences climate suitability for dengue, chikungunya, and Zika transmission. PLoS Neglected Tropical Diseases, 2018, 12, e0006451.	3.0	98
17	Transmission of West Nile and five other temperate mosquito-borne viruses peaks at temperatures between 23°C and 26°C. ELife, 2020, 9, .	6.0	90
18	A global test of ecoregions. Nature Ecology and Evolution, 2018, 2, 1889-1896.	7.8	79

Erin A Mordecai

#	Article	IF	CITATIONS
19	Disease ecology, health and the environment: a framework to account for ecological and socio-economic drivers in the control of neglected tropical diseases. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160128.	4.0	78
20	Competition–defense tradeoffs and the maintenance of plant diversity. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 17217-17222.	7.1	74
21	The rise and fall of infectious disease in a warmer world. F1000Research, 2016, 5, 2040.	1.6	73
22	A framework for priority effects. Journal of Vegetation Science, 2016, 27, 655-657.	2.2	70
23	Temperature explains broad patterns of Ross River virus transmission. ELife, 2018, 7, .	6.0	67
24	The Role of Vector Trait Variation in Vector-Borne Disease Dynamics. Frontiers in Ecology and Evolution, 2020, 8, .	2.2	57
25	Warming temperatures could expose more than 1.3Âbillion new people to Zika virus risk by 2050. Global Change Biology, 2021, 27, 84-93.	9.5	57
26	Mathematical models are a powerful method to understand and control the spread of Huanglongbing. PeerJ, 2016, 4, e2642.	2.0	52
27	Climate predicts geographic and temporal variation in mosquito-borne disease dynamics on two continents. Nature Communications, 2021, 12, 1233.	12.8	49
28	Soil Moisture and Fungi Affect Seed Survival in California Grassland Annual Plants. PLoS ONE, 2012, 7, e39083.	2.5	49
29	Chopping the tail: How preventing superspreading can help to maintain COVID-19 control. Epidemics, 2021, 34, 100430.	3.0	47
30	How will mosquitoes adapt to climate warming?. ELife, 2021, 10, .	6.0	46
31	Estimating the effects of variation in viremia on mosquito susceptibility, infectiousness, and R0 of Zika in Aedes aegypti. PLoS Neglected Tropical Diseases, 2018, 12, e0006733.	3.0	44
32	Mosquito and primate ecology predict human risk of yellow fever virus spillover in Brazil. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180335.	4.0	44
33	Dynamic and integrative approaches to understanding pathogen spillover. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20190014.	4.0	43
34	Despite spillover, a shared pathogen promotes native plant persistence in a cheatgrassâ€invaded grassland. Ecology, 2013, 94, 2744-2753.	3.2	42
35	Human-mediated impacts on biodiversity and the consequences for zoonotic disease spillover. Current Biology, 2021, 31, R1342-R1361.	3.9	40
36	The problem of scale in the prediction and management of pathogen spillover. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20190224.	4.0	34

Erin A Mordecai

#	Article	IF	CITATIONS
37	Priority Effects and Nonhierarchical Competition Shape Species Composition in a Complex Grassland Community. American Naturalist, 2019, 193, 213-226.	2.1	31
38	Phenomenological forecasting of disease incidence using heteroskedastic Gaussian processes: A dengue case study. Annals of Applied Statistics, 2018, 12, .	1.1	29
39	Impact of prior and projected climate change on US Lyme disease incidence. Global Change Biology, 2021, 27, 738-754.	9.5	29
40	Malaria smear positivity among Kenyan children peaks at intermediate temperatures as predicted by ecological models. Parasites and Vectors, 2019, 12, 288.	2.5	28
41	The influence of vectorâ€borne disease on human history: socioâ€ecological mechanisms. Ecology Letters, 2021, 24, 829-846.	6.4	28
42	The impact of long-term non-pharmaceutical interventions on COVID-19 epidemic dynamics and control: the value and limitations of early models. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20210811.	2.6	27
43	Foliar pathogens are unlikely to stabilize coexistence of competing species in a California grassland. Ecology, 2018, 99, 2250-2259.	3.2	26
44	Consequences of Pathogen Spillover for Cheatgrass-Invaded Grasslands: Coexistence, Competitive Exclusion, or Priority Effects. American Naturalist, 2013, 181, 737-747.	2.1	25
45	Within-Host Niche Differences and Fitness Trade-offs Promote Coexistence of Plant Viruses. American Naturalist, 2016, 187, E13-E26.	2.1	24
46	AeDES: a next-generation monitoring and forecasting system for environmental suitability of Aedes-borne disease transmission. Scientific Reports, 2020, 10, 12640.	3.3	21
47	Age influences the thermal suitability of <i>Plasmodium falciparum</i> transmission in the Asian malaria vector <i>Anopheles stephensi</i> . Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20201093.	2.6	21
48	The role of drought- and disturbance-mediated competition in shaping community responses to varied environments. Oecologia, 2016, 181, 621-632.	2.0	20
49	Climate drives spatial variation in Zika epidemics in Latin America. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20191578.	2.6	20
50	Controls over native perennial grass exclusion and persistence in California grasslands invaded by annuals. Ecology, 2015, 96, 2643-2652.	3.2	19
51	Pathogen impacts on plant diversity in variable environments. Oikos, 2015, 124, 414-420.	2.7	18
52	The role of competition – colonization tradeoffs and spatial heterogeneity in promoting trematode coexistence. Ecology, 2016, 97, 1484-1496.	3.2	17
53	Susceptible host availability modulates climate effects on dengue dynamics. Ecology Letters, 2021, 24, 415-425.	6.4	14
54	Global Health Impacts for Economic Models of Climate Change: A Systematic Review and Meta-Analysis. Annals of the American Thoracic Society, 2022, 19, 1203-1212.	3.2	14

ERIN A MORDECAI

#	Article	IF	CITATIONS
55	Effects of changes in temperature on Zika dynamics and control. Journal of the Royal Society Interface, 2021, 18, 20210165.	3.4	11
56	Soil moisture mediated interaction between Polygonatum biflorum and leaf spot disease. Plant Ecology, 2010, 209, 1-9.	1.6	10
57	Environmental Drivers of Vector-Borne Diseases. , 2020, , 85-118.		10
58	Understanding the emergence of contingent and deterministic exclusion in multispecies communities. Ecology Letters, 2021, 24, 2155-2168.	6.4	8
59	Physiology and ecology combine to determine host and vector importance for Ross River virus. ELife, 2021, 10, .	6.0	8
60	Differential Impacts of Virus Diversity on Biomass Production of a Native and an Exotic Grass Host. PLoS ONE, 2015, 10, e0134355.	2.5	7
61	Household and climate factors influence Aedes aegypti presence in the arid city of Huaquillas, Ecuador. PLoS Neglected Tropical Diseases, 2021, 15, e0009931.	3.0	7
62	Spatial and Temporal Changes in Nesting Behavior by Black Skimmers (Rynchops niger) in New Jersey, USA, from 1976-2019. Waterbirds, 2020, 43, .	0.3	3
63	Native perennial and nonâ€native annual grasses shape pathogen community composition and disease severity in a California grassland. Journal of Ecology, 2021, 109, 900-912.	4.0	2
64	Clobal Change and Emerging Infectious Diseases. Annual Review of Resource Economics, 2022, 14, 333-354.	3.7	2
65	Habitat type and interannual variation shape unique fungal pathogen communities on a California native bunchgrass. Fungal Ecology, 2020, 48, 100983.	1.6	1
66	Response to Valle and Zorello Laporta: Clarifying the Use of Instrumental Variable Methods to Understand the Effects of Environmental Change on Infectious Disease Transmission. American Journal of Tropical Medicine and Hygiene, 2021, 105, 1456-1459.	1.4	0