
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4503128/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	TGF-β1–induced endothelial-mesenchymal transition: a potential contributor to fibrotic remodeling in atrial fibrillation?. Journal of Clinical Investigation, 2022, 132, .	3.9	8
2	Sexâ€Specific Classification of Drugâ€Induced Torsade de Pointes Susceptibility Using Cardiac Simulations and Machine Learning. Clinical Pharmacology and Therapeutics, 2021, 110, 380-391.	2.3	22
3	Intracellular Na+ Modulates Pacemaking Activity in Murine Sinoatrial Node Myocytes: An In Silico Analysis. International Journal of Molecular Sciences, 2021, 22, 5645.	1.8	13
4	Bidirectional flow of the funny current (I _f) during the pacemaking cycle in murine sinoatrial node myocytes. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	14
5	Quantitative cross-species translators of cardiac myocyte electrophysiology: Model training, experimental validation, and applications. Science Advances, 2021, 7, eabg0927.	4.7	22
6	General Principles for the Validation of Proarrhythmia Risk Prediction Models: An Extension of the CiPA <i>In Silico</i> Strategy. Clinical Pharmacology and Therapeutics, 2020, 107, 102-111.	2.3	67
7	Atrial fibrillation in a dish: insights into atrial arrhythmogenesis from induced pluripotent stem cell-derived cardiomyocytes. Cardiovascular Research, 2020, 116, 1089-1091.	1.8	Ο
8	Mechanisms of Cav3-associated arrhythmia: Protein or microdomain dysfunction?. International Journal of Cardiology, 2020, 320, 97-99.	0.8	2
9	Populations of in silico myocytes and tissues reveal synergy of multiatrialâ€predominant K ⁺ â€current block in atrial fibrillation. British Journal of Pharmacology, 2020, 177, 4497-4515.	2.7	23
10	GRK5 Controls SAP97-Dependent Cardiotoxic β ₁ Adrenergic Receptor-CaMKII Signaling in Heart Failure. Circulation Research, 2020, 127, 796-810.	2.0	16
11	Hypokalemia Promotes Arrhythmia by Distinct Mechanisms in Atrial and Ventricular Myocytes. Circulation Research, 2020, 126, 889-906.	2.0	31
12	Quantitative systems models illuminate arrhythmia mechanisms in heart failure: Role of the Na+ -Ca2+ -Ca2+ /calmodulin-dependent protein kinase II-reactive oxygen species feedback. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2019, 11, e1434.	6.6	4
13	A computational model of induced pluripotent stemâ€cell derived cardiomyocytes incorporating experimental variability from multiple data sources. Journal of Physiology, 2019, 597, 4533-4564.	1.3	87
14	Computational modeling: What does it tell us about atrial fibrillation therapy?. International Journal of Cardiology, 2019, 287, 155-161.	0.8	24
15	Different paths, same destination: divergent action potential responses produce conserved cardiac fightâ€orâ€flight response in mouse and rabbit hearts. Journal of Physiology, 2019, 597, 3867-3883.	1.3	22
16	Antiarrhythmic mechanisms of beta blocker therapy. Pharmacological Research, 2019, 146, 104274.	3.1	58
17	Enhanced Depolarization Drive in Failing Rabbit Ventricular Myocytes. Circulation: Arrhythmia and Electrophysiology, 2019, 12, e007061.	2.1	29
18	Transient outward K ⁺ current can strongly modulate action potential duration and initiate alternans in the human atrium. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 316, H527-H542.	1.5	20

#	Article	IF	CITATIONS
19	Adenylyl cyclase 5–generated cAMP controls cerebral vascular reactivity during diabetic hyperglycemia. Journal of Clinical Investigation, 2019, 129, 3140-3152.	3.9	35
20	Keeping it short and (not so) simple: characterizing hERG kinetics with sinusoidal waves. Journal of Physiology, 2018, 596, 1783-1784.	1.3	1
21	Inward Rectifier Potassium Channels (Kir2.x) and Caveolin-3 Domain–Specific Interaction. Circulation: Arrhythmia and Electrophysiology, 2018, 11, e005800.	2.1	29
22	Non-ion channel therapeutics for heart failure and atrial fibrillation: Are CaMKII inhibitors ready for clinical use?. Journal of Molecular and Cellular Cardiology, 2018, 121, 300-303.	0.9	12
23	Effects of Modulation of Small-Conductance Calcium-Activated Potassium Current on Atrial Electrophysiology and Arrhythmogenesis: A Population-Based Computational Study. Biophysical Journal, 2018, 114, 473a.	0.2	1
24	Editorial: Safety Pharmacology – Risk Assessment QT Interval Prolongation and Beyond. Frontiers in Physiology, 2018, 9, 678.	1.3	10
25	A Heart for Diversity: Simulating Variability in Cardiac Arrhythmia Research. Frontiers in Physiology, 2018, 9, 958.	1.3	66
26	Logistic regression analysis of populations of electrophysiological models to assess proarrythmic risk. MethodsX, 2017, 4, 25-34.	0.7	53
27	Ser ¹⁹²⁸ phosphorylation by PKA stimulates the L-type Ca ²⁺ channel Ca _V 1.2 and vasoconstriction during acute hyperglycemia and diabetes. Science Signaling, 2017, 10, .	1.6	85
28	Predominant contribution of L-type Cav1.2 channel stimulation to impaired intracellular calcium and cerebral artery vasoconstriction in diabetic hyperglycemia. Channels, 2017, 11, 340-346.	1.5	16
29	FRET biosensor uncovers cAMP nano-domains at \hat{l}^2 -adrenergic targets that dictate precise tuning of cardiac contractility. Nature Communications, 2017, 8, 15031.	5.8	166
30	Size matters, proportion too: coupling of experiments and theory reveals relative roles of K ⁺ channels in action potential stability. Journal of Physiology, 2017, 595, 2319-2320.	1.3	2
31	Quantitative analysis of the Ca ²⁺ â€dependent regulation of delayed rectifier K ⁺ current <i>I</i> _{Ks} in rabbit ventricular myocytes. Journal of Physiology, 2017, 595, 2253-2268.	1.3	37
32	Revealing kinetics and state-dependent binding properties of IKur-targeting drugs that maximize atrial fibrillation selectivity. Chaos, 2017, 27, 093918.	1.0	17
33	Potassium channels in the heart: structure, function and regulation. Journal of Physiology, 2017, 595, 2209-2228.	1.3	79
34	Potassium currents in the heart: functional roles in repolarization, arrhythmia and therapeutics. Journal of Physiology, 2017, 595, 2229-2252.	1.3	76
35	In Silico Assessment of Efficacy and Safety of IKur Inhibitors in Chronic Atrial Fibrillation: Role of Kinetics and State-Dependence of Drug Binding. Frontiers in Pharmacology, 2017, 8, 799.	1.6	24
36	Applications of Dynamic Clamp to Cardiac Arrhythmia Research: Role in Drug Target Discovery and Safety Pharmacology Testing. Frontiers in Physiology, 2017, 8, 1099.	1.3	19

#	Article	IF	CITATIONS
37	Small-Conductance Ca2+-Activated K+ Current in Atrial Fibrillation: Both Friend and FOE. Biophysical Journal, 2016, 110, 274a.	0.2	8
38	<i>In silico</i> prediction of drug therapy in catecholaminergic polymorphic ventricular tachycardia. Journal of Physiology, 2016, 594, 567-593.	1.3	35
39	Anti-arrhythmic strategies for atrial fibrillation. , 2016, 168, 126-142.		29
40	Atrial-selective targeting of arrhythmogenic phase-3 early afterdepolarizations in human myocytes. Journal of Molecular and Cellular Cardiology, 2016, 96, 63-71.	0.9	46
41	Ion Channels in the Heart. , 2015, 5, 1423-1464.		135
42	β-adrenergic effects on cardiac myofilaments and contraction in an integrated rabbit ventricular myocyte model. Journal of Molecular and Cellular Cardiology, 2015, 81, 162-175.	0.9	52
43	Na ⁺ channel function, regulation, structure, trafficking and sequestration. Journal of Physiology, 2015, 593, 1347-1360.	1.3	59
44	Slow [Na] _i Changes and Positive Feedback Between Membrane Potential and [Ca] _i Underlie Intermittent Early Afterdepolarizations and Arrhythmias. Circulation: Arrhythmia and Electrophysiology, 2015, 8, 1472-1480.	2.1	31
45	Models of the Ventricular Action Potential in Health and Disease. , 2014, , 319-330.		3
46	A novel computational model of mouse myocyte electrophysiology to assess the synergy between Na ⁺ loading and CaMKII. Journal of Physiology, 2014, 592, 1181-1197.	1.3	96
47	CaMKII comes of age in cardiac health and disease. Frontiers in Pharmacology, 2014, 5, 154.	1.6	7
48	Nonequilibrium Reactivation of Na + Current Drives Early Afterdepolarizations in Mouse Ventricle. Circulation: Arrhythmia and Electrophysiology, 2014, 7, 1205-1213.	2.1	42
49	How does Î ² -adrenergic signalling affect the transitions from ventricular tachycardia to ventricular fibrillation?. Europace, 2014, 16, 452-457.	0.7	21
50	CaMKII-dependent regulation of cardiac Na+ homeostasis. Frontiers in Pharmacology, 2014, 5, 41.	1.6	39
51	β-adrenergic stimulation activates early afterdepolarizations transiently via kinetic mismatch of PKA targets. Journal of Molecular and Cellular Cardiology, 2013, 58, 153-161.	0.9	66
52	Post-translational modifications of the cardiac Na channel: contribution of CaMKII-dependent phosphorylation to acquired arrhythmias. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 305, H431-H445.	1.5	80
53	Ranolazine for Congenital and Acquired Late I _{Na} -Linked Arrhythmias. Circulation Research, 2013, 113, e50-e61.	2.0	79
54	Theoretical study of Lâ€ŧype Ca ²⁺ current inactivation kinetics during action potential repolarization and early afterdepolarizations. Journal of Physiology, 2012, 590, 4465-4481.	1.3	47

#	Article	IF	CITATIONS
55	Altered Excitation-Contraction Coupling in Human Chronic Atrial Fibrillation. Journal of Atrial Fibrillation, 2012, 4, 495.	0.5	4
56	Human Atrial Fibrillation: Insights From Computational Electrophysiological Models. Trends in Cardiovascular Medicine, 2011, 21, 145-150.	2.3	22
57	Reactive Oxygen Species–Activated Ca/Calmodulin Kinase IIδ Is Required for Late <i>I</i> _{Na} Augmentation Leading to Cellular Na and Ca Overload. Circulation Research, 2011, 108, 555-565.	2.0	256
58	Late Sodium Current Contributes to the Reverse Rate-Dependent Effect of I _{Kr} Inhibition on Ventricular Repolarization. Circulation, 2011, 123, 1713-1720.	1.6	97
59	Human Atrial Action Potential and Ca ²⁺ Model. Circulation Research, 2011, 109, 1055-1066.	2.0	368
60	Interplay of voltage and Ca-dependent inactivation of L-type Ca current. Progress in Biophysics and Molecular Biology, 2010, 103, 44-50.	1.4	33
61	A novel computational model of the human ventricular action potential and Ca transient. Journal of Molecular and Cellular Cardiology, 2010, 48, 112-121.	0.9	393
62	Ca/Calmodulin Kinase II Differentially Modulates Potassium Currents. Circulation: Arrhythmia and Electrophysiology, 2009, 2, 285-294.	2.1	121
63	Theoretical investigation of action potential duration dependence on extracellular Ca2+ in human cardiomyocytes. Journal of Molecular and Cellular Cardiology, 2009, 46, 332-342.	0.9	42
64	Calcium/Calmodulin-dependent Kinase II Regulation of Cardiac Ion Channels. Journal of Cardiovascular Pharmacology, 2009, 54, 180-187.	0.8	132
65	Induction of NO synthase 2 in ventricular cardiomyocytes incubated with a conventional bicarbonate dialysis bath. Nephrology Dialysis Transplantation, 2008, 23, 2192-2197.	0.4	15
66	Calcium and potassium changes during haemodialysis alter ventricular repolarization duration: in vivo and in silico analysis. Nephrology Dialysis Transplantation, 2007, 23, 1378-1386.	0.4	62
67	Patients with complex arrhythmias during and after haemodialysis suffer from different regimens of potassium removal. Nephrology Dialysis Transplantation, 2007, 23, 1415-1421.	0.4	88
68	Simulation of Ca-Calmodulin-Dependent Protein Kinase II on Rabbit Ventricular Myocyte Ion Currents and Action Potentials. Biophysical Journal, 2007, 93, 3835-3847.	0.2	99
69	In silico assessment of Y1795C and Y1795H SCN5A mutations: implication for inherited arrhythmogenic syndromes. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 292, H56-H65.	1.5	23
70	Computer Simulation of Altered Sodium Channel Gating in Rabbit and HumanVentricular Myocytes. , 2007, , 120-128.		0
71	Cardiac response to hemodialysis with different cardiovascular tolerance: Heart rate variability and QT interval analysis. Hemodialysis International, 2006, 10, 287-293.	0.4	23