Liang Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4502904/publications.pdf

Version: 2024-02-01

		304743	302126
50	1,652 citations	22	39
papers	citations	h-index	g-index
F.3	5 1	F.1	1164
51	51	51	1164
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Advancement in Cascade [1,n]â€Hydrogen Transfer/Cyclization: A Method for Direct Functionalization of Inactive C(<i>sp</i> ³)H Bonds. Advanced Synthesis and Catalysis, 2014, 356, 1137-1171.	4.3	171
2	Alkylideneindoleninium Ions and Alkylideneindolenines: Key Intermediates for the Asymmetric Synthesis of 3â€Indolyl Derivatives. Asian Journal of Organic Chemistry, 2014, 3, 1036-1052.	2.7	109
3	Catalyst-free dehydrative S _N 1-type reaction of indolyl alcohols with diverse nucleophiles "on water― Green Chemistry, 2016, 18, 1032-1037.	9.0	103
4	Organocatalytic C(sp ³)–H Functionalization via Carbocation-Initiated Cascade [1,5]-Hydride Transfer/Cyclization: Synthesis of Dihydrodibenzo[<i>b</i> , <i>e</i>]azepines. Organic Letters, 2018, 20, 138-141.	4.6	96
5	Tandem sp ³ C–H Functionlization/Decarboxylation of 2-Alkylazaarenes with Coumarin-3-carboxylic Acids. Organic Letters, 2014, 16, 796-799.	4.6	78
6	Fluorinated Alcoholâ€Mediated S _N 1â€Type Reaction of Indolyl Alcohols with Diverse Nucleophiles. Advanced Synthesis and Catalysis, 2015, 357, 4023-4030.	4.3	77
7	Hydrogen-Atom Transfer Reactions. Topics in Current Chemistry, 2016, 374, 17.	5.8	75
8	Construction of the tetrahydroquinoline spiro skeleton via cascade [1,5]-hydride transfer-involved C(sp3)–H functionalization "on waterâ€, Green Chemistry, 2017, 19, 5653-5658.	9.0	67
9	Controllable Syntheses of Spiroindolenines and Benzazepinoindoles via Hexafluoroisopropanol-Mediated Redox-Neutral Cascade Process. Organic Letters, 2019, 21, 6225-6230.	4.6	56
10	Catalyst-free tandem Michael addition/decarboxylation of (thio)coumarin-3-carboxylic acids with indoles: facile synthesis of indole-3-substituted 3,4-dihydro(thio)coumarins. Organic and Biomolecular Chemistry, 2014, 12, 2185-2188.	2.8	43
11	C(sp ³)â€"H bond functionalization by sequential hydride transfer/cyclization: electronic effect and steric effect controlled regioselectivity. Organic Chemistry Frontiers, 2016, 3, 635-638.	4.5	42
12	Pd-Catalyzed Debenzylation and Deallylation of Ethers and Esters with Sodium Hydride. ACS Catalysis, 2018, 8, 3016-3020.	11.2	38
13	Ammonium persulphate induced synthesis of polymethyl methacrylate grafted sodium alginate composite films with high strength for food packaging. International Journal of Biological Macromolecules, 2019, 124, 1238-1245.	7.5	38
14	Divergent Synthesis of [3,4]-Fused 3-Alkenyl-Oxindoles via Propargyl Alcohol-Triggered C(sp ³)–H Functionalization. ACS Catalysis, 2022, 12, 943-952.	11.2	38
15	Redox-Triggered Switchable Synthesis of 3,4-Dihydroquinolin-2(1 <i>H</i>)-one Derivatives via Hydride Transfer/ <i>N</i> -Dealkylation/ <i>N</i> -Acylation. Organic Letters, 2021, 23, 358-364.	4.6	34
16	Fluorinated alcohol-mediated $[4+3]$ cycloaddition reaction of indolyl alcohols with cyclopentadiene. Organic and Biomolecular Chemistry, 2016, 14, 11510-11517.	2.8	33
17	Catalyst-free synthesis of (E)-2-alkenylquinoline derivatives via C(sp3)-H functionalization of 2-methylquinolines. Tetrahedron Letters, 2014, 55, 6856-6860.	1.4	32
18	Construction of Chiral Cyclic Compounds via Asymmetric Cascade[1, <i>n</i>]-Hydride Transfer/Cyclization. Chinese Journal of Organic Chemistry, 2018, 38, 328.	1.3	32

#	Article	IF	CITATIONS
19	Diversified Construction of Chromeno[3,4â€ <i>c</i>)pyridinâ€5â€one and Benzo[<i>c</i>)chromenâ€6â€one Derivatives by Domino Reaction of 4â€Alkynylâ€2â€oxoâ€2 <i>H</i> â€chromeneâ€3â€carbaldehydes. Advanced Synthesis and Catalysis, 2014, 356, 1835-1845.	4.3	30
20	Facile synthesis of azaarene-2-substituted chromanone derivatives via tandem sp3 C–H functionalization/decarboxylation of azaarenes with 4-oxo-4H-chromene-3-carboxylic acid. RSC Advances, 2014, 4, 53188-53191.	3.6	30
21	Organocatalytic Dearomative [4 + 2] Cycloadditions of Biomass-Derived 2,5-Dimethylfuran with <i>>ortho</i> >Quinone Methides: Access to Multisubstituted Chromanes. Organic Letters, 2018, 20, 6069-6073.	4.6	30
22	Efficient construction of tetrahydroquinolines <i>via</i> fluorinated alcohol mediated cascade [1,5]-hydride transfer/cyclization. Organic and Biomolecular Chemistry, 2018, 16, 7109-7114.	2.8	23
23	A Highly Regio- and Stereoselective Syntheses of $\hat{l}\pm$ -Halo Enamides, Vinyl Thioethers, and Vinyl Ethers with Aqueous Hydrogen Halide in Two-Phase Systems. Organic Letters, 2018, 20, 4507-4511.	4.6	23
24	Friedel–Crafts alkylation of heteroarenes and arenes with indolyl alcohols for construction of 3,3-disubstituted oxindoles. RSC Advances, 2015, 5, 101713-101717.	3.6	22
25	<i>t/i>-BuOK-Mediated Oxidative Dehydrogenative C(sp³)-H Arylation of 2-Alkylazaarenes with Nitroarenes. Journal of Organic Chemistry, 2017, 82, 8703-8709.</i>	3.2	22
26	The Employment of Sodium Hydride as a Michael Donor in Palladium atalyzed Reductions of α, βâ€Unsaturated Carbonyl Compounds. Advanced Synthesis and Catalysis, 2019, 361, 1554-1558.	4.3	22
27	The dual alkylation of the C(sp ³)–H bond of cyclic α-methyl- <i>N</i> -sulfonyl imines <i>via</i> the sequential condensation/hydride transfer/cyclization process. Organic Chemistry Frontiers, 2020, 7, 3868-3873.	4.5	20
28	Metal-Free [2 + 2 + 2] Cycloaddition of Ynamide–Nitriles with Ynamides: A Highly Regio- and Chemoselective Synthesis of δ-Carboline Derivatives. Journal of Organic Chemistry, 2018, 83, 13308-13324.	3.2	19
29	Selfâ€healing polyurethane nanocomposite films with recoverable surface hydrophobicity. Journal of Applied Polymer Science, 2018, 135, 46421.	2.6	18
30	HFIP-mediated three-component imidization of electron-rich arenes with $\langle i \rangle$ in situ $\langle i \rangle$ formed spiroindolenines for facile construction of 2-arylspiroindolenines. Organic Chemistry Frontiers, 2022, 9, 1696-1702.	4.5	15
31	Facile Synthesis of Azaarene-Substituted Hydroxycoumarins Possessing High Biological Activities via Three-Component C(sp ³)–H Functionalization. ACS Combinatorial Science, 2016, 18, 604-610.	3.8	14
32	Ag NP-Loaded Cotton Fiber Materials: Preparation, Surface Deposition, and Antibacterial Activity with Different Chemical Structures. ACS Applied Bio Materials, 2019, 2, 510-517.	4.6	14
33	Fluorinated alcohol mediated <i>N</i> , <i>N</i> ,ê≥-dialkylation of amino acid derivatives <i>via</i> cascade [1,5]-hydride transfer/cyclization for concise synthesis of tetrahydroquinazoline. Organic and Biomolecular Chemistry, 2020, 18, 895-904.	2.8	14
34	Hydrogen-bonding-assisted redox-neutral construction of tetrahydroquinolines via hydride transfer. Organic and Biomolecular Chemistry, 2020, 18, 4267-4271.	2.8	14
35	Facile Construction of Troponoid Derivatives Incorporating Imidazolin-2-one Moieties. Synthesis, 2020, 52, 1847-1854.	2.3	13
36	Divergent syntheses of spirooxindoles from oxindole-embedded four-membered synthon <i>via</i> cycloaddition reactions. Organic Chemistry Frontiers, 2020, 7, 747-755.	4.5	13

#	Article	IF	Citations
37	Samarium-based Grignard-type addition of organohalides to carbonyl compounds under catalysis of Cul. Chemical Communications, 2021, 57, 6169-6172.	4.1	13
38	Divergent α-functionalization of cyclic amines <i>via</i> ring construction by molecular O ₂ oxidized dearomatization and ring deconstruction by aromatization-driven C–C Ïf-bond cleavage. Green Chemistry, 2021, 23, 5535-5541.	9.0	13
39	Facile syntheses of tetrahydroquinolines and 1,2-dihydroquinolines <i>via</i> vinylogous cascade hydride transfer/cyclization. Organic Chemistry Frontiers, 2021, 8, 2224-2231.	4.5	13
40	Electrospun Gelatin Membrane Cross-Linked by a Bis(diarylcarbene) for Oil/Water Separation: A New Strategy To Prepare Porous Organic Polymers. ACS Omega, 2018, 3, 3928-3935.	3.5	12
41	Diastereoselective construction of structurally diverse 2,3-dihydroquinolin-4-one scaffolds <i>>via</i> redox neutral cascade [1,7]-hydride transfer/cyclization. Organic Chemistry Frontiers, 2022, 9, 660-666.	4.5	12
42	Bifunctional thiourea catalyzed asymmetric Michael addition of anthrone to methyleneindolinones. RSC Advances, 2016, 6, 38558-38562.	3.6	11
43	Aromatization-driven deconstruction/refunctionalization of unstrained rings. Organic Chemistry Frontiers, 2020, 7, 1570-1575.	4.5	11
44	Organocatalytic βâ€Functionalization of Saturated Carbonyl Compoundsâ€"the State of the Art. ChemCatChem, 2014, 6, 1183-1185.	3.7	10
45	Direct functionalization of benzylic and non-benzylic C(sp ³)–H bonds <i>via</i> keteniminium ion initiated cascade [1,5]-hydrogen transfer/cyclization. Organic Chemistry Frontiers, 2018, 5, 1854-1858.	4.5	10
46	Facile Construction of 3,4â€dihydroâ€2Hâ€1,2,4â€Benzothiadiazine 1,1â€Dioxides via Redoxâ€Neutral Cascade Condensation/[1,7]â€Hydride Transfer/Cyclization. Asian Journal of Organic Chemistry, 2020, 9, 1787-1792.	2.7	10
47	Regioselective Michael Addition of Anthrone to MethyleneÂindolinones. Synthesis, 2016, 48, 2112-2120.	2.3	6
48	Preparation, Postâ∈Modification, and Antibacterial Application of Gelatin Electrospun Membranes. Macromolecular Bioscience, 2018, 18, e1800093.	4.1	5
49	Catalytic Formal Benzylic C–H Bond Functionalization of 2,5-Dialkylfuran Derivatives with Ferrocenyl Alcohols as Alkylation Reagents. Organic Letters, 2019, 21, 627-631.	4.6	5
50	Diverse Application of 4-Hydroxycoumarin in the Syntheses of Tetrahydroquinoline and Zwitterionic Biscoumarin Derivatives. Chinese Journal of Organic Chemistry, 2021, 41, 2788.	1.3	3