
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4502596/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chemical Evolution of Rhinovirus Identifies Capsid-Destabilizing Mutations Driving Low-pH-Independent Genome Uncoating. Journal of Virology, 2022, 96, JVI0106021.	1.5	12
2	BRD2 inhibition blocks SARS-CoV-2 infection by reducing transcription of the host cell receptor ACE2. Nature Cell Biology, 2022, 24, 24-34.	4.6	47
3	APOBEC3C S188I Polymorphism Enhances Context-Specific Editing of Hepatitis B Virus Genome. Journal of Infectious Diseases, 2022, 226, 891-895.	1.9	1
4	An alphavirus-derived self-amplifying mRNA encoding PpSP15-LmSTI1 fusion protein for the design of a vaccine against leishmaniasis. Parasitology International, 2022, 89, 102577.	0.6	1
5	Identification of DAXX as a restriction factor of SARS-CoV-2 through a CRISPR/Cas9 screen. Nature Communications, 2022, 13, 2442.	5.8	25
6	Interactions between vector competence to chikungunya virus and resistance to deltamethrin in <i>Aedes aegypti</i> laboratory lines?. Medical and Veterinary Entomology, 2022, 36, 486-495.	0.7	3
7	Defective viral genomes from chikungunya virus are broad-spectrum antivirals and prevent virus dissemination in mosquitoes. PLoS Pathogens, 2021, 17, e1009110.	2.1	23
8	Plitidepsin has potent preclinical efficacy against SARS-CoV-2 by targeting the host protein eEF1A. Science, 2021, 371, 926-931.	6.0	247
9	Defective viral genomes as therapeutic interfering particles against flavivirus infection in mammalian and mosquito hosts. Nature Communications, 2021, 12, 2290.	5.8	32
10	Host PDZâ€containing proteins targeted by SARSâ€CoVâ€2. FEBS Journal, 2021, 288, 5148-5162.	2.2	48
11	Drug-induced phospholipidosis confounds drug repurposing for SARS-CoV-2. Science, 2021, 373, 541-547.	6.0	148
12	Masitinib is a broad coronavirus 3CL inhibitor that blocks replication of SARS-CoV-2. Science, 2021, 373, 931-936.	6.0	173
13	Intra and inter-cellular modeling of dynamic interaction between Zika virus and its naturally occurring defective viral genomes. Journal of Virology, 2021, 95, e0097721.	1.5	Ο
14	Characterising proteolysis during SARS-CoV-2 infection identifies viral cleavage sites and cellular targets with therapeutic potential. Nature Communications, 2021, 12, 5553.	5.8	76
15	Quantitative evaluation of PpSP15-LmSTI1 fusion gene expression following transfection with an alphavirus-derived self-amplifying mRNA and conventional DNA vaccine platforms. Molecular and Cellular Probes, 2021, 59, 101749.	0.9	9
16	Mathematical modelling of SARS-CoV-2 infection of human and animal host cells reveals differences in the infection rates and delays in viral particle production by infected cells. Journal of Theoretical Biology, 2021, 531, 110895.	0.8	5
17	Induced intra- and intermolecular template switching as a therapeutic mechanism against RNA viruses. Molecular Cell, 2021, 81, 4467-4480.e7.	4.5	10
18	Herpes Simplex Virus Type 1 Infection Disturbs the Mitochondrial Network, Leading to Type I Interferon Production through the RNA Polymerase III/RIG-I Pathway. MBio, 2021, 12, e0255721.	1.8	16

#	Article	IF	CITATIONS
19	Comparative host-coronavirus protein interaction networks reveal pan-viral disease mechanisms. Science, 2020, 370, .	6.0	508
20	RNA-seq accuracy and reproducibility for the mapping and quantification of influenza defective viral genomes. Rna, 2020, 26, 1905-1918.	1.6	18
21	An ultrapotent synthetic nanobody neutralizes SARS-CoV-2 by stabilizing inactive Spike. Science, 2020, 370, 1473-1479.	6.0	336
22	Modelling Degradation and Replication Kinetics of the Zika Virus In Vitro Infection. Viruses, 2020, 12, 547.	1.5	6
23	High-Throughput Fluorescence-Based Screen Identifies the Neuronal MicroRNA miR-124 as a Positive Regulator of Alphavirus Infection. Journal of Virology, 2020, 94, .	1.5	10
24	The Global Phosphorylation Landscape of SARS-CoV-2 Infection. Cell, 2020, 182, 685-712.e19.	13.5	825
25	A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature, 2020, 583, 459-468.	13.7	3,542
26	Chikungunya virus superinfection exclusion is mediated by a block in viral replication and does not rely on non-structural protein 2. PLoS ONE, 2020, 15, e0241592.	1.1	12
27	Usutu Virus: An Arbovirus on the Rise. Viruses, 2019, 11, 640.	1.5	77
28	Chikungunya Virus Vaccine Candidates with Decreased Mutational Robustness Are Attenuated <i>In Vivo</i> and Have Compromised Transmissibility. Journal of Virology, 2019, 93, .	1.5	27
29	Host nutritional status affects alphavirus virulence, transmission, and evolution. PLoS Pathogens, 2019, 15, e1008089.	2.1	34
30	Defective viral genomes are key drivers of the virus–host interaction. Nature Microbiology, 2019, 4, 1075-1087.	5.9	229
31	Arthritogenic Alphaviruses: A Worldwide Emerging Threat?. Microorganisms, 2019, 7, 133.	1.6	56
32	Long-term context-dependent genetic adaptation of the viral genetic cloud. Bioinformatics, 2019, 35, 1907-1915.	1.8	7
33	Dicer-2-Dependent Generation of Viral DNA from Defective Genomes of RNA Viruses Modulates Antiviral Immunity in Insects. Cell Host and Microbe, 2018, 23, 353-365.e8.	5.1	124
34	Seasonal Genetic Drift of Human Influenza A Virus Quasispecies Revealed by Deep Sequencing. Frontiers in Microbiology, 2018, 9, 2596.	1.5	27
35	Homologous recombination is an intrinsic defense against antiviral RNA interference. Proceedings of the United States of America, 2018, 115, E9211-E9219.	3.3	17
36	Complete Genome Sequence of a Novel Recombinant Citrus Tristeza Virus , a Resistance-Breaking Isolate from Uruguay. Genome Announcements, 2018, 6, .	0.8	5

#	Article	IF	CITATIONS
37	Chikungunya virus evolution following a large 3′UTR deletion results in host-specific molecular changes in protein-coding regions. Virus Evolution, 2018, 4, vey012.	2.2	24
38	Monitoring and redirecting virus evolution. PLoS Pathogens, 2018, 14, e1006979.	2.1	13
39	Differential Transmission of Antiviral Drug-Resistant Chikungunya Viruses by <i>Aedes</i> Mosquitoes. MSphere, 2018, 3, .	1.3	8
40	The defective component of viral populations. Current Opinion in Virology, 2018, 33, 74-80.	2.6	79
41	Taking a bite out of nutrition and arbovirus infection. PLoS Neglected Tropical Diseases, 2018, 12, e0006247.	1.3	31
42	Imaging of viral neuroinvasion in the zebrafish reveals that Sindbis and chikungunya viruses favour different entry routes. DMM Disease Models and Mechanisms, 2017, 10, 847-857.	1.2	46
43	Virus population dynamics during infection. Current Opinion in Virology, 2017, 23, 82-87.	2.6	65
44	Chikungunya Virus Overcomes Polyamine Depletion by Mutation of nsP1 and the Opal Stop Codon To Confer Enhanced Replication and Fitness. Journal of Virology, 2017, 91, .	1.5	35
45	Pathogenic Events in a Nonhuman Primate Model of Oral Poliovirus Infection Leading to Paralytic Poliomyelitis. Journal of Virology, 2017, 91, .	1.5	34
46	Understanding the Mechanism of the Broad-Spectrum Antiviral Activity of Favipiravir (T-705): Key Role of the F1 Motif of the Viral Polymerase. Journal of Virology, 2017, 91, .	1.5	62
47	Curcumin inhibits Zika and chikungunya virus infection by inhibiting cell binding. Antiviral Research, 2017, 142, 148-157.	1.9	246
48	The Bridges and Blockades to Evolutionary Convergence on the Road to Predicting Chikungunya Virus Evolution. Annual Review of Virology, 2017, 4, 181-200.	3.0	15
49	Drivers of Dengue Intrahost Evolution. Cell Host and Microbe, 2017, 22, 260-261.	5.1	0
50	Polyamines and Their Role in Virus Infection. Microbiology and Molecular Biology Reviews, 2017, 81, .	2.9	82
51	Uptake and metabolism of arginine impact Plasmodium development in the liver. Scientific Reports, 2017, 7, 4072.	1.6	29
52	Attenuation of RNA viruses by redirecting their evolution in sequence space. Nature Microbiology, 2017, 2, 17088.	5.9	77
53	Cell-Based High-Throughput Screening Assay Identifies 2′,2′-Difluoro-2′-deoxycytidine Gemcitabine as a Potential Antipoliovirus Agent. ACS Infectious Diseases, 2017, 3, 45-53.	1.8	17
54	Design of a Genetically Stable High Fidelity Coxsackievirus B3 Polymerase That Attenuates Virus Growth in Vivo. Journal of Biological Chemistry, 2016, 291, 13999-14011.	1.6	41

#	Article	IF	CITATIONS
55	Virus-derived DNA drives mosquito vector tolerance to arboviral infection. Nature Communications, 2016, 7, 12410.	5.8	199
56	Inhibition of Polyamine Biosynthesis Is a Broad-Spectrum Strategy against RNA Viruses. Journal of Virology, 2016, 90, 9683-9692.	1.5	71
57	Interferon-Induced Spermidine-Spermine Acetyltransferase and Polyamine Depletion Restrict Zika and Chikungunya Viruses. Cell Host and Microbe, 2016, 20, 167-177.	5.1	105
58	Homology-Based Identification of a Mutation in the Coronavirus RNA-Dependent RNA Polymerase That Confers Resistance to Multiple Mutagens. Journal of Virology, 2016, 90, 7415-7428.	1.5	137
59	Increasing Clinical Severity during a Dengue Virus Type 3 Cuban Epidemic: Deep Sequencing of Evolving Viral Populations. Journal of Virology, 2016, 90, 4320-4333.	1.5	32
60	Low-Fidelity Polymerases of Alphaviruses Recombine at Higher Rates To Overproduce Defective Interfering Particles. Journal of Virology, 2016, 90, 2446-2454.	1.5	57
61	Whole-Genome Sequencing Analysis from the Chikungunya Virus Caribbean Outbreak Reveals Novel Evolutionary Genomic Elements. PLoS Neglected Tropical Diseases, 2016, 10, e0004402.	1.3	96
62	Viral Polymerase-Helicase Complexes Regulate Replication Fidelity To Overcome Intracellular Nucleotide Depletion. Journal of Virology, 2015, 89, 11233-11244.	1.5	36
63	Group Selection and Contribution of Minority Variants during Virus Adaptation Determines Virus Fitness and Phenotype. PLoS Pathogens, 2015, 11, e1004838.	2.1	106
64	Mutations in Coronavirus Nonstructural Protein 10 Decrease Virus Replication Fidelity. Journal of Virology, 2015, 89, 6418-6426.	1.5	56
65	Deep sequencing analysis of viral infection and evolution allows rapid and detailed characterization of viral mutant spectrum. Bioinformatics, 2015, 31, 2141-2150.	1.8	62
66	Fidelity Variants and RNA Quasispecies. Current Topics in Microbiology and Immunology, 2015, 392, 303-322.	0.7	54
67	Structure-Function Relationships Underlying the Replication Fidelity of Viral RNA-Dependent RNA Polymerases. Journal of Virology, 2015, 89, 275-286.	1.5	95
68	Phylogenetic and Genome-Wide Deep-Sequencing Analyses of Canine Parvovirus Reveal Co-Infection with Field Variants and Emergence of a Recent Recombinant Strain. PLoS ONE, 2014, 9, e111779.	1.1	73
69	Alphavirus Mutator Variants Present Host-Specific Defects and Attenuation in Mammalian and Insect Models. PLoS Pathogens, 2014, 10, e1003877.	2.1	94
70	RNA Virus Population Diversity, an Optimum for Maximal Fitness and Virulence. Journal of Biological Chemistry, 2014, 289, 29531-29544.	1.6	94
71	Emergence and Transmission of Arbovirus Evolutionary Intermediates with Epidemic Potential. Cell Host and Microbe, 2014, 15, 706-716.	5.1	107
72	Ribavirin: a drug active against many viruses with multiple effects on virus replication and propagation. Molecular basis of ribavirin resistance. Current Opinion in Virology, 2014, 8, 10-15.	2.6	102

#	Article	IF	CITATIONS
73	Coronaviruses Lacking Exoribonuclease Activity Are Susceptible to Lethal Mutagenesis: Evidence for Proofreading and Potential Therapeutics. PLoS Pathogens, 2013, 9, e1003565.	2.1	392
74	Mutational Robustness of an RNA Virus Influences Sensitivity to Lethal Mutagenesis. Journal of Virology, 2012, 86, 2869-2873.	1.5	55
75	Coxsackievirus B3 mutator strains are attenuated in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E2294-303.	3.3	129
76	Biomedical implications of viral mutation and evolution. Future Virology, 2012, 7, 391-402.	0.9	4
77	Closing the gap: the challenges in converging theoretical, computational, experimental and real-life studies in virus evolution. Current Opinion in Virology, 2012, 2, 515-518.	2.6	15
78	Viruses: foe, freeloader or friend?. Current Opinion in Microbiology, 2012, 15, 486-489.	2.3	1
79	RNA virus population diversity: implications for inter-species transmission. Current Opinion in Virology, 2011, 1, 643-648.	2.6	44
80	Isolation of Fidelity Variants of RNA Viruses and Characterization of Virus Mutation Frequency. Journal of Visualized Experiments, 2011, , .	0.2	33
81	Host Alternation of Chikungunya Virus Increases Fitness while Restricting Population Diversity and Adaptability to Novel Selective Pressures. Journal of Virology, 2011, 85, 1025-1035.	1.5	152
82	Arbovirus high fidelity variant loses fitness in mosquitoes and mice. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16038-16043.	3.3	222
83	Fidelity Variants of RNA Dependent RNA Polymerases Uncover an Indirect, Mutagenic Activity of Amiloride Compounds. PLoS Pathogens, 2010, 6, e1001163.	2.1	75
84	Delivery of mengovirus-derived RNA replicons into tumoural liver enhances the anti-tumour efficacy of a peripheral peptide-based vaccine. Cancer Immunology, Immunotherapy, 2008, 57, 1161-1171.	2.0	5
85	Engineering attenuated virus vaccines by controlling replication fidelity. Nature Medicine, 2008, 14, 154-161.	15.2	247
86	Harnessing Endogenous miRNAs to Control Virus Tissue Tropism as a Strategy for Developing Attenuated Virus Vaccines. Cell Host and Microbe, 2008, 4, 239-248.	5.1	147
87	Evolutionary constraints on chaperone-mediated folding provide an antiviral approach refractory to development of drug resistance. Genes and Development, 2007, 21, 195-205.	2.7	246
88	Quasispecies diversity determines pathogenesis through cooperative interactions in a viral population. Nature, 2006, 439, 344-348.	13.7	982
89	Remote Site Control of an Active Site Fidelity Checkpoint in a ViralRNA-dependent RNAPolymerase. Journal of Biological Chemistry, 2005, 280, 25706-25716.	1.6	150
90	Ribavirin and lethal mutagenesis of poliovirus: molecular mechanisms, resistance and biological implications. Virus Research, 2005, 107, 173-181.	1.1	132

#	Article	IF	CITATIONS
91	Expression of a Membrane-Anchored Glycoprotein, the Influenza Virus Hemagglutinin, by Dicistronic Replicons Derived from the Poliovirus Genome. Journal of Virology, 2002, 76, 5285-5290.	1.5	3
92	Naked RNA immunization with replicons derived from poliovirus and Semliki Forest virus genomes for the generation of a cytotoxic T cell response against the influenza A virus nucleoprotein. Journal of General Virology, 2001, 82, 1737-1747.	1.3	37
93	Biological Implications of Picornavirus Fidelity Mutants. , 0, , 213-227.		3