Sven F Seys

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4502202/publications.pdf

Version: 2024-02-01

109321 128289 4,022 92 35 60 h-index citations g-index papers 98 98 98 5143 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Precision medicine in patients with allergic diseases: Airway diseases and atopic dermatitis—PRACTALL document of the European Academy of Allergy and Clinical Immunology and the American Academy of Allergy, Asthma & Immunology. Journal of Allergy and Clinical Immunology, 2016, 137, 1347-1358.	2.9	249
2	Impaired barrier function in patients with house dust mite–induced allergic rhinitis is accompanied by decreased occludin and zonula occludens-1 expression. Journal of Allergy and Clinical Immunology, 2016, 137, 1043-1053.e5.	2.9	244
3	EUFOREA consensus on biologics for CRSwNP with or without asthma. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 2312-2319.	5.7	239
4	Nonâ€allergic rhinitis: Position paper of the European Academy of Allergy and Clinical Immunology. Allergy: European Journal of Allergy and Clinical Immunology, 2017, 72, 1657-1665.	5.7	193
5	Mortality in non-cystic fibrosis bronchiectasis: A prospective cohort analysis. Respiratory Medicine, 2014, 108, 287-296.	2.9	143
6	Histamine and T helper cytokine–driven epithelial barrier dysfunction in allergic rhinitis. Journal of Allergy and Clinical Immunology, 2018, 141, 951-963.e8.	2.9	139
7	Toward clinically applicable biomarkers for asthma: An <scp>EAACI</scp> position paper. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 1835-1851.	5.7	135
8	Positioning the principles of precision medicine in care pathways for allergic rhinitis and chronic rhinosinusitis – A <scp>EUFOREA</scp> â€ <scp>ARIA</scp> â€ <scp>EPOS</scp> â€ <scp>AlRWAYS ICP</scp> statement. Allergy: European Journal of Allergy and Clinical Immunology, 2017, 72, 1297-1305.	5.7	130
9	Endotype-driven treatment in chronic upper airway diseases. Clinical and Translational Allergy, 2017, 7, 22.	3.2	117
10	Real-life study showing uncontrolled rhinosinusitis after sinus surgery in a tertiary referral centre. Allergy: European Journal of Allergy and Clinical Immunology, 2017, 72, 282-290.	5.7	99
11	Allergy in severe asthma. Allergy: European Journal of Allergy and Clinical Immunology, 2017, 72, 207-220.	5.7	96
12	IL- $1\hat{1}^2$, IL-23, and TGF- $\hat{1}^2$ drive plasticity of human ILC2s towards IL-17-producing ILCs in nasal inflammation. Nature Communications, 2019, 10, 2162.	12.8	95
13	Risk factors for morbidity and death in non-cystic fibrosis bronchiectasis: a retrospective cross-sectional analysis of CT diagnosed bronchiectatic patients. Respiratory Research, 2012, 13, 21.	3.6	89
14	Forced expiration measurements in mouse models of obstructive and restrictive lung diseases. Respiratory Research, 2017, 18, 123.	3.6	89
15	Intranasal administration of probiotic <i>Lactobacillus rhamnosus</i> GG prevents birch pollenâ€induced allergic asthma in a murine model. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 100-110.	5.7	84
16	Emerging roles of innate lymphoid cells in inflammatory diseases: Clinical implications. Allergy: European Journal of Allergy and Clinical Immunology, 2018, 73, 837-850.	5.7	79
17	Effects of high altitude and cold air exposure on airway inflammation in patients with asthma. Thorax, 2013, 68, 906-913.	5.6	78
18	Sputum cytokine mapping reveals an â€~ILâ€5, ILâ€17A, ILâ€25â€high' pattern associated with poorly contro asthma. Clinical and Experimental Allergy, 2013, 43, 1009-1017.	lled 2.9	67

#	Article	IF	CITATIONS
19	Mobile health tools for the management of chronic respiratory diseases. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 1292-1306.	5.7	66
20	Probiotics for the airways: Potential to improve epithelial and immune homeostasis. Allergy: European Journal of Allergy and Clinical Immunology, 2018, 73, 1954-1963.	5.7	64
21	Cluster analysis of sputum cytokine-high profiles reveals diversity in T(h)2-high asthma patients. Respiratory Research, 2017, 18, 39.	3.6	63
22	Obese Individuals with Asthma Preferentially Have a High IL-5/IL-17A/IL-25 Sputum Inflammatory Pattern. American Journal of Respiratory and Critical Care Medicine, 2014, 189, 1284-1285.	5.6	60
23	Mechanisms of exerciseâ€induced bronchoconstriction in athletes: Current perspectives and future challenges. Allergy: European Journal of Allergy and Clinical Immunology, 2018, 73, 8-16.	5.7	60
24	New insights in neutrophilic asthma. Current Opinion in Pulmonary Medicine, 2019, 25, 113-120.	2.6	53
25	The <scp>S</scp> putum <scp>C</scp> olour <scp>C</scp> hart as a predictor of lung inflammation, proteolysis and damage in nonâ€eystic fibrosis bronchiectasis: A case–control analysis. Respirology, 2014, 19, 203-210.	2.3	49
26	Damage-associated molecular pattern and innate cytokine release in the airways of competitive swimmers. Allergy: European Journal of Allergy and Clinical Immunology, 2015, 70, 187-194.	5.7	49
27	European Summit on the Prevention and Self-Management of Chronic Respiratory Diseases: report of the European Union Parliament Summit (29 March 2017). Clinical and Translational Allergy, 2017, 7, 49.	3.2	48
28	Anterior Nares Diversity and Pathobionts Represent Sinus Microbiome in Chronic Rhinosinusitis. MSphere, 2019, 4, .	2.9	47
29	Changes in DNA Methylation in Mouse Lungs after a Single Intra-Tracheal Administration of Nanomaterials. PLoS ONE, 2017, 12, e0169886.	2.5	47
30	Realâ€life assessment of chronic rhinosinusitis patients using mobile technology: The mySinusitisCoach project by EUFOREA. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 2867-2878.	5.7	45
31	Restoring airway epithelial barrier dysfunction: a new therapeutic challenge in allergic airway disease. Rhinology, 2016, 54, 195-205.	1.3	45
32	Visual analogue scale for sino-nasal symptoms severity correlates with sino-nasal outcome test 22: paving the way for a simple outcome tool of CRS burden. Clinical and Translational Allergy, 2018, 8, 32.	3.2	43
33	Nasal epithelial barrier dysfunction increases sensitization and mast cell degranulation in the absence of allergic inflammation. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 1155-1164.	5.7	42
34	mySinusitisCoach: patient empowerment in chronic rhinosinusitis using mobile technology. Rhinology, 2018, 56, 209-215.	1.3	41
35	<scp>MP</scp> 29â€02 reduces nasal hyperreactivity and nasal mediators in patients with house dust miteâ€allergic rhinitis. Allergy: European Journal of Allergy and Clinical Immunology, 2018, 73, 1084-1093.	5.7	40
36	<i>Lactobacillus rhamnosus</i> probiotic prevents airway function deterioration and promotes gut microbiome resilience in a murine asthma model. Gut Microbes, 2020, 11, 1729-1744.	9.8	39

#	Article	IF	Citations
37	Neuro-immune interactions in chemical-induced airway hyperreactivity. European Respiratory Journal, 2016, 48, 380-392.	6.7	37
38	<i>Staphylococcus aureus</i> enterotoxin B disrupts nasal epithelial barrier integrity. Clinical and Experimental Allergy, 2021, 51, 87-98.	2.9	36
39	EUFOREA Rhinology Research Forum 2016: report of the brainstorming sessions on needs and priorities in rhinitis and rhinosinusitis. Rhinology, 2017, 55, 202-210.	1.3	36
40	Cyto-genotoxic and DNA methylation changes induced by different crystal phases of TiO 2 -np in bronchial epithelial (16-HBE) cells. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2017, 796, 1-12.	1.0	35
41	Innate lymphoid cells in asthma: pathophysiological insights from murine models to human asthma phenotypes. Current Opinion in Allergy and Clinical Immunology, 2019, 19, 53-60.	2.3	34
42	Immunosuppressive parameters in serum of ovarian cancer patients change during the disease course. Oncolmmunology, 2016, 5, e1111505.	4.6	31
43	Surgery in Nasal Polyp Patients: Outcome After a Minimum Observation of 10 Years. American Journal of Rhinology and Allergy, 2021, 35, 449-457.	2.0	30
44	An outbreak of swimming-pool related respiratory symptoms: An elusive source of trichloramine in a municipal indoor swimming pool. International Journal of Hygiene and Environmental Health, 2015, 218, 386-391.	4.3	29
45	Toluene diisocyanate and methylene diphenyl diisocyanate: asthmatic response and cross-reactivity in a mouse model. Archives of Toxicology, 2016, 90, 1709-1717.	4.2	29
46	Stepwise approach towards adoption of allergen immunotherapy for allergic rhinitis and asthma patients in daily practice in Belgium: a BelSACI-Abeforcal-EUFOREA statement. Clinical and Translational Allergy, 2019, 9, 1.	3.2	27
47	Methylisothiazolinone: Dermal and respiratory immune responses in mice. Toxicology Letters, 2015, 235, 179-188.	0.8	24
48	Programmed cell deathâ€1 expression correlates with disease severity and ILâ€5 in chronic rhinosinusitis with nasal polyps. Allergy: European Journal of Allergy and Clinical Immunology, 2017, 72, 985-993.	5.7	23
49	Assessing patient-reported outcomes in asthma and COPD patients. Current Opinion in Pulmonary Medicine, 2018, 24, 18-23.	2.6	21
50	Alpine altitude climate treatment for severe and uncontrolled asthma: An EAACI position paper. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 1991-2024.	5.7	21
51	Placental Growth Factor Contributes to Bronchial Neutrophilic Inflammation and Edema in Allergic Asthma. American Journal of Respiratory Cell and Molecular Biology, 2012, 46, 781-789.	2.9	20
52	Probiotics against airway allergy: host factors to consider. DMM Disease Models and Mechanisms, 2018, 11, .	2.4	20
53	Health effects of exposure to chlorination byâ€products in swimming pools. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 3257-3275.	5.7	18
54	Role of sputum biomarkers in the management of asthma. Current Opinion in Pulmonary Medicine, 2017, 23, 34-40.	2.6	17

#	Article	IF	Citations
55	Feasibility to apply eucapnic voluntary hyperventilation in young elite athletes. Respiratory Medicine, 2016, 111, 91-93.	2.9	15
56	Airway inflammation in patients with chronic non-asthmatic cough. Thorax, 2013, 68, 125-130.	5.6	14
57	IL-17A in Human Respiratory Diseases: Innate or Adaptive Immunity? Clinical Implications. Clinical and Developmental Immunology, 2013, 2013, 1-8.	3.3	14
58	Real-life study showing better control of allergic rhinitis by immunotherapy than regular pharmacotherapy. Rhinology, 2017, 54, 214-220.	1.3	14
59	Rhinology Future Debates, an EUFOREA Report. Rhinology, 2017, 55, 298-304.	1.3	13
60	Low cord blood Foxp3/CD3î³ <scp>mRNA</scp> ratios: a marker of increased risk for allergy development. Clinical and Experimental Allergy, 2015, 45, 232-237.	2.9	12
61	Physical exercise, immune response, and susceptibility to infections—current knowledge and growing research areas. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 2653-2664.	5.7	12
62	Dermal exposure determines the outcome of repeated airway exposure in a long-term chemical-induced asthma-like mouse model. Toxicology, 2019, 421, 84-92.	4.2	11
63	<i>Lacticaseibacillus casei</i> AMBR2 Restores Airway Epithelial Integrity in Chronic Rhinosinusitis With Nasal Polyps. Allergy, Asthma and Immunology Research, 2021, 13, 560.	2.9	11
64	IL-13 is a central mediator of chemical-induced airway hyperreactivity in mice. PLoS ONE, 2017, 12, e0180690.	2.5	10
65	Regulation of melanocortin 1 receptor in allergic rhinitis <i>in vitro</i> and <i>in vivo</i> . Clinical and Experimental Allergy, 2016, 46, 1066-1074.	2.9	9
66	Exercise and Sinonasal Disease. Immunology and Allergy Clinics of North America, 2018, 38, 259-269.	1.9	9
67	Nasal symptoms, epithelial injury and neurogenic inflammation in elite swimmers. Rhinology, 2018, 56, 279-287.	1.3	9
68	Multidisciplinary Care for Severe or Uncontrolled Chronic Upper Airway Diseases. Current Allergy and Asthma Reports, 2021, 21, 27.	5.3	9
69	Prevalence and triggers of self-reported nasal hyperreactivity in adults with asthma. World Allergy Organization Journal, 2020, 13, 100132.	3.5	9
70	Real-life study showing better control of allergic rhinitis by immunotherapy than regular pharmacotherapy. Rhinology, 2016, 54, 214-220.	1.3	9
71	Serum and sputum calprotectin, a reflection of neutrophilic airway inflammation in asthmatics after highâ€altitude exposure. Clinical and Experimental Allergy, 2017, 47, 1675-1677.	2.9	8
72	<scp>AQUA $<$ sup>© Questionnaire as prediction tool for atopy in young elite athletes. Pediatric Allergy and Immunology, 2018, 29, 648-650.	2.6	8

#	Article	IF	Citations
73	Early-onset airway damage in early-career elite athletes: AÂrisk factor for exercise-induced bronchoconstriction. Journal of Allergy and Clinical Immunology, 2019, 144, 1423-1425.e9.	2.9	8
74	Patient Advisory Board for Chronic Rhinosinusitis – A EUFOREA initiative. Rhinology, 2019, 57, 0-0.	1.3	8
7 5	Innate Lymphoid Cells Are Required to Induce Airway Hyperreactivity in a Murine Neutrophilic Asthma Model. Frontiers in Immunology, 2022, 13, 849155.	4.8	7
76	ARIA masterclass 2018: From guidelines to real-life implementation. Rhinology, 2019, 57, 0-0.	1.3	6
77	Rhinology Future Debates 2018, a EUFOREA Report. Rhinology, 2020, 58, 0-0.	1.3	6
78	Tackling nasal symptoms in athletes: Moving towards personalized medicine. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 2716-2729.	5.7	4
79	Rhinology Future Debates 2017 by <scp>EUFOREA</scp> : Novel treatments and surgical solutions in rhinology. Clinical Otolaryngology, 2018, 43, 1429-1438.	1.2	3
80	How to detect young athletes at risk of exercise-induced bronchoconstriction? Paediatric Respiratory Reviews, 2021, , .	1.8	3
81	Rhinology Future Debates, an EUFOREA Report. Rhinology, 2017, 55, 298-304.	1.3	2
82	Exposome mapping in chronic respiratory diseases: the added value of digital technology. Current Opinion in Allergy and Clinical Immunology, 2022, 22, 1-9.	2.3	2
83	The quest for biomarkers in asthma: challenging the T2 <i>versus</i> non-T2 paradigm. European Respiratory Journal, 2022, 59, 2102669.	6.7	2
84	Carbon loading in airway macrophages to traffic-derived particulate matter air pollution. Archives of Public Health, $2015, 73, .$	2.4	1
85	EUFOREA Approach to Precision Medicine in Respiratory Diseases. , 2019, , 207-211.		1
86	Intranasal probiotic $\langle i \rangle$ Lactobacillus rhamnosus $\langle i \rangle$ GG prevents respiratory exacerbation in a mouse model of birch pollen allergic asthma., 2019,,.		1
87	Sputum "lLâ€5, ILâ€17A, ILâ€25â€high―pattern is associated with uncontrolled asthma and worse lung func Clinical and Translational Allergy, 2013, 3, O3.	tion.	O
88	O02 ―Exerciseâ€induced bronchoconstriction in young athletes. Clinical and Translational Allergy, 2014, 4, O2.	3.2	0
89	1097â€Importance of skin exposure in a sub-chronic mouse model of chemical-induced asthma. , 2018, , .		O
90	Full Patient Monitoring Using Digital Health Technology. , 2019, , 195-202.		0

#	Article	IF	CITATIONS
91	<i>Staphylococcus aureus</i> Enterotoxin B Disrupts Nasal Epithelial Barrier Integrity via TLR2 Activation. SSRN Electronic Journal, 0, , .	0.4	O
92	The effect of anti-IL-5 therapy on sputum cells and cytokines in asthmatics. , 2019, , .		0