List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4502139/publications.pdf Version: 2024-02-01

Rs S Miidty

#	Article	IF	CITATIONS
1	Grain refinement of aluminium and its alloys by heterogeneous nucleation and alloying. International Materials Reviews, 2002, 47, 3-29.	19.3	706
2	Decomposition in multi-component AlCoCrCuFeNi high-entropy alloy. Acta Materialia, 2011, 59, 182-190.	7.9	656
3	Novel materials synthesis by mechanical alloying/milling. International Materials Reviews, 1998, 43, 101-141.	19.3	553
4	Alloying behavior in multi-component AlCoCrCuFe and NiCoCrCuFe high entropy alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 534, 83-89.	5.6	326
5	Bulk tracer diffusion in CoCrFeNi and CoCrFeMnNi high entropy alloys. Acta Materialia, 2018, 146, 211-224.	7.9	295
6	Tensile and wear behaviour of in situ Al–7Si/TiB2 particulate composites. Wear, 2008, 265, 134-142.	3.1	286
7	Synthesis and characterization of nanocrystalline AlFeTiCrZnCu high entropy solid solution by mechanical alloying. Journal of Alloys and Compounds, 2008, 460, 253-257.	5.5	280
8	High-entropy alloys by mechanical alloying: A review. Journal of Materials Research, 2019, 34, 664-686.	2.6	258
9	Mechanical properties of Al-based metal matrix composites reinforced with Zr-based glassy particles produced by powder metallurgy. Acta Materialia, 2009, 57, 2029-2039.	7.9	229
10	Ni tracer diffusion in CoCrFeNi and CoCrFeMnNi high entropy alloys. Journal of Alloys and Compounds, 2016, 688, 994-1001.	5.5	222
11	Alloying, thermal stability and strengthening in spark plasma sintered AlxCoCrCuFeNi high entropy alloys. Journal of Alloys and Compounds, 2014, 583, 419-426.	5.5	220
12	High-Entropy Alloys. , 2014, , 13-35.		220
13	Processing and properties of nanocrystalline CuNiCoZnAlTi high entropy alloys by mechanical alloying. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 1027-1030.	5.6	219
14	Development of ultrafine grained high strength Al–Cu alloy by cryorolling. Scripta Materialia, 2006, 54, 2013-2017.	5.2	201
15	Development of an efficient grain refiner for Al–7Si alloy and its modification with strontium. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2000, 283, 94-104.	5.6	194
16	On the Hall–Petch relationship in a nanostructured Al–Cu alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 7821-7825.	5.6	178
17	Effect of TiB2 particles on sliding wear behaviour of Al–4Cu alloy. Wear, 2007, 262, 160-166.	3.1	170
18	Influence of oxygen on the crystallization behavior of Zr65Cu27.5Al7.5 and Zr66.7Cu33.3 metallic glasses. Acta Materialia, 2000, 48, 3985-3996.	7.9	165

#	Article	IF	CITATIONS
19	Aluminum-Based Cast In Situ Composites: A Review. Journal of Materials Engineering and Performance, 2015, 24, 2185-2207.	2.5	162
20	Thermal Spray High-Entropy Alloy Coatings: A Review. Journal of Thermal Spray Technology, 2020, 29, 857-893.	3.1	162
21	On the parameters to assess the glass forming ability of liquids. Journal of Non-Crystalline Solids, 2005, 351, 1366-1371.	3.1	155
22	Effect of grain size on dielectric and ferroelectric properties of nanostructured Ba0.8Sr0.2TiO3 ceramics. Journal of Advanced Ceramics, 2015, 4, 46-53.	17.4	154
23	Plasma-Sprayed High Entropy Alloys: Microstructure and Properties of AlCoCrFeNi and MnCoCrFeNi. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 791-800.	2.2	149
24	Direct evidence for oxygen stabilization of icosahedral phase during crystallization of Zr65Cu27.5Al7.5 metallic glass. Applied Physics Letters, 2000, 76, 55-57.	3.3	143
25	Atomic-scale compositional characterization of a nanocrystalline AlCrCuFeNiZn high-entropy alloy using atom probe tomography. Acta Materialia, 2013, 61, 4696-4706.	7.9	138
26	Development of Al–Ti–C grain refiners and study of their grain refining efficiency on Al and Al–7Si alloy. Journal of Alloys and Compounds, 2005, 396, 143-150.	5.5	134
27	Phase formation in mechanically alloyed AlxCoCrCuFeNi (xÂ=Â0.45, 1, 2.5, 5Âmol) high entropy alloys. Intermetallics, 2013, 32, 119-126.	3.9	131
28	Sliding wear behaviour of T6 treated A356–TiB2 in-situ composites. Wear, 2009, 266, 865-872.	3.1	122
29	Hot consolidation and mechanical properties of nanocrystalline equiatomic AlFeTiCrZnCu high entropy alloy after mechanical alloying. Journal of Materials Science, 2010, 45, 5158-5163.	3.7	110
30	Microstructural characterization and corrosion behavior of multipass friction stir processed AA2219 aluminium alloy. Surface and Coatings Technology, 2008, 202, 4057-4068.	4.8	107
31	Multiscale mechanical performance and corrosion behaviour of plasma sprayed AlCoCrFeNi high-entropy alloy coatings. Journal of Alloys and Compounds, 2021, 854, 157140.	5.5	107
32	Nanocomposites and an extremely hard nanocrystalline intermetallic of Al–Fe alloys prepared by mechanical alloying. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 2370-2378.	5.6	106
33	Phase formation and thermal stability of CoCrFeNi and CoCrFeMnNi equiatomic high entropy alloys. Journal of Alloys and Compounds, 2019, 774, 856-864.	5.5	105
34	Solid state amorphization in binary Tiî—,Ni, Tiî—,Cu and ternary Tiî—,Niî—,Cu system by mechanical alloying. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1992, 149, 231-240.	5.6	103
35	Local structure of amorphous Zr70Pd30 alloy studied by electron diffraction. Applied Physics Letters, 2001, 79, 485-487.	3.3	102
36	Ageing behaviour of A356 alloy reinforced with in-situ formed TiB2 particles. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 489, 220-226.	5.6	102

#	Article	IF	CITATIONS
37	Formation and Stability of Equiatomic and Nonequiatomic Nanocrystalline CuNiCoZnAlTi High-Entropy Alloys by Mechanical Alloying. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2010, 41, 2703-2709.	2.2	100
38	Investigation of intrinsic defects in core-shell structured ZnO nanocrystals. Journal of Applied Physics, 2012, 111, .	2.5	100
39	Radioactive isotopes reveal a non sluggish kinetics of grain boundary diffusion in high entropy alloys. Scientific Reports, 2017, 7, 12293.	3.3	100
40	Effect of processing parameters on the corrosion behaviour of friction stir processed AA 2219 aluminum alloy. Solid State Sciences, 2009, 11, 907-917.	3.2	99
41	Milling maps and amorphization during mechanical alloying. Acta Metallurgica Et Materialia, 1995, 43, 2443-2450.	1.8	98
42	Effect of grain refinement on wear properties of Al and Al–7Si alloy. Wear, 2004, 257, 148-153.	3.1	97
43	Phase evolution and stability of nanocrystalline CoCrFeNi and CoCrFeMnNi high entropy alloys. Journal of Alloys and Compounds, 2019, 770, 1004-1015.	5.5	94
44	Phase Evolution and Densification Behavior of Nanocrystalline Multicomponent High Entropy Alloys During Spark Plasma Sintering. Jom, 2013, 65, 1797-1804.	1.9	93
45	Glass forming ability: Miedema approach to (Zr, Ti, Hf)–(Cu, Ni) binary and ternary alloys. Journal of Alloys and Compounds, 2008, 465, 163-172.	5.5	91
46	Understanding the microstructural evolution of high entropy alloy coatings manufactured by atmospheric plasma spray processing. Applied Surface Science, 2020, 505, 144117.	6.1	91
47	Development of an efficient grain refiner for Al–7Si alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2000, 280, 58-61.	5.6	87
48	Mechanism of mechanical alloying in NiAl and CuZn systems. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1996, 214, 146-152.	5.6	86
49	Nanoquasicrystallization of binary Zr–Pd metallic glasses. Applied Physics Letters, 2000, 77, 1102-1104.	3.3	84
50	On sinterability of nanostructured W produced by high-energy ball milling. Journal of Materials Research, 2007, 22, 1200-1206.	2.6	78
51	Analysis of phase formation in multi-component alloys. Journal of Alloys and Compounds, 2012, 544, 152-158.	5.5	75
52	Influence of sequence of elemental addition on phase evolution in nanocrystalline AlCoCrFeNi: Novel approach to alloy synthesis using mechanical alloying. Materials and Design, 2017, 126, 37-46.	7.0	75
53	Optimization of bulk metallic glass forming compositions in Zr–Cu–Al system by thermodynamic modeling. Intermetallics, 2007, 15, 716-721.	3.9	74
54	Study of microstructure and magnetic properties of AlNiCo(CuFe) high entropy alloy. Journal of Alloys and Compounds, 2018, 746, 194-199.	5.5	73

#	Article	IF	CITATIONS
55	Influence of in situ formed TiB2 particles on the abrasive wear behaviour of Al–4Cu alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 465, 160-164.	5.6	71
56	Thermal stability of AlCoFeMnNi high-entropy alloy. Scripta Materialia, 2019, 162, 465-467.	5.2	70
57	Prediction of grain size of Al–7Si Alloy by neural networks. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 391, 131-140.	5.6	69
58	Milling criteria for the synthesis of nanocrystalline NiAl by mechanical alloying. Journal of Alloys and Compounds, 2007, 429, 204-210.	5.5	69
59	Effect of Sc addition on the microstructure and wear properties of A356 alloy and A356–TiB2 in situ composite. Materials & Design, 2015, 78, 85-94.	5.1	69
60	Structure and thermal stability of nanocrystalline materials. Sadhana - Academy Proceedings in Engineering Sciences, 2003, 28, 23-45.	1.3	67
61	High temperature wear behavior of Al–4Cu–TiB2 in situ composites. Wear, 2010, 268, 1266-1274.	3.1	67
62	Ferroelectric phase transition in Pb0.92Gd0.08(Zr0.53Ti0.47)0.98O3 nanoceramic synthesized by high-energy ball milling. Journal of Applied Physics, 2003, 94, 6091-6096.	2.5	65
63	Effect of crystal structure and grain size on corrosion properties of AlCoCrFeNi high entropy alloy. Journal of Alloys and Compounds, 2021, 863, 158056.	5.5	65
64	Nanoquasicrystalline phase formation in binary Zr–Pd and Zr–Pt alloys. Acta Materialia, 2001, 49, 3453-3462.	7.9	62
65	Mechanical and electrical properties of Cu–Ta nanocomposites prepared by high-energy ball milling. Acta Materialia, 2007, 55, 4439-4445.	7.9	62
66	Effect of Sc addition and T6 aging treatment on the microstructure modification and mechanical properties of A356 alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 674, 438-450.	5.6	62
67	On Joule heating during spark plasma sintering of metal powders. Scripta Materialia, 2014, 93, 52-55.	5.2	61
68	Novel materials synthesis by mechanical alloying/milling. International Materials Reviews, 1998, 43, 101-141.	19.3	61
69	Grain refinement response of LM25 alloy towards Al–Ti–C and Al–Ti–B grain refiners. Journal of Alloys and Compounds, 2009, 472, 112-120.	5.5	59
70	Wear behaviour of near eutectic Al–Si alloy reinforced with in-situ TiB2 particles. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 506, 27-33.	5.6	58
71	Characterization of Oxide Dispersed AlCoCrFe High Entropy Alloy Synthesized by Mechanical Alloying and Spark Plasma Sintering. Transactions of the Indian Institute of Metals, 2013, 66, 369-373.	1.5	58
72	Ti2NiCoSnSb - a new half-Heusler type high-entropy alloy showing simultaneous increase in Seebeck coefficient and electrical conductivity for thermoelectric applications. Scientific Reports, 2019, 9, 5331.	3.3	58

#	Article	IF	CITATIONS
73	Icosahedral phase formation by the primary crystallization of a Zr-Cu-Pd metallic glass. Scripta Materialia, 2000, 43, 103-107.	5.2	57
74	Microstructural and wear behavior of hypoeutectic Al–Si alloy (LM25) grain refined and modified with Al–Ti–C–Sr master alloy. Wear, 2006, 261, 133-139.	3.1	57
75	Grain growth kinetics in CoCrFeNi and CoCrFeMnNi high entropy alloys processed by spark plasma sintering. Journal of Alloys and Compounds, 2019, 791, 1114-1121.	5.5	57
76	Synthesis of copper–alumina nanocomposite by reactive milling. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 393, 382-386.	5.6	56
77	Al–(L12)Al3Ti nanocomposites prepared by mechanical alloying: Synthesis and mechanical properties. Journal of Alloys and Compounds, 2010, 492, 128-133.	5.5	55
78	Critical evaluation of glass forming ability criteria. Materials Science and Technology, 2016, 32, 380-400.	1.6	55
79	Phase prediction in high entropy alloys – A kinetic approach. Acta Materialia, 2018, 153, 214-225.	7.9	54
80	Synthesis and stability of L12–Al3Ti by mechanical alloying. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 367, 218-224.	5.6	53
81	Large-scale green synthesis of Cu nanoparticles. Environmental Chemistry Letters, 2013, 11, 183-187.	16.2	53
82	Influence of process parameters on the synthesis of nano-titania by sol–gel route. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 452-453, 758-762.	5.6	52
83	Nanoquasicrystallization of Zr-based metallic glasses. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2001, 312, 253-261.	5.6	51
84	Effect of scandium additions on microstructure and mechanical properties of Al–Zn–Mg alloy welds. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 467, 132-138.	5.6	50
85	Effect of Temperature on the Wear Behavior of Al-7Si-TiB2 In-Situ Composites. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2009, 40, 223-231.	2.2	50
86	Manufacture of Al–Ti–B master alloys by the reaction of complex halide salts with molten aluminium. Journal of Materials Processing Technology, 1999, 89-90, 152-158.	6.3	49
87	Microstructure and mechanical properties of a high entropy alloy with a eutectic composition (AlCoCrFeNi2.1) synthesized by mechanical alloying and spark plasma sintering. Journal of Alloys and Compounds, 2020, 835, 155424.	5.5	49
88	Enhanced mangnetoelectric voltage in multiferroic particulate Ni0.83Co0.15Cu0.02Fe1.9O4â^î/PbZr0.52Ti0.48O3 composites – dielectric, piezoelectric and magnetic properties. Current Applied Physics, 2009, 9, 1134-1139.	2.4	48
89	Microstructure and Mechanical Properties of Nanostructured Al-4Cu Alloy Produced by Mechanical Alloying and Vacuum Hot Pressing. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2009, 40, 2798-2801.	2.2	48
90	Influence of silicon and magnesium on grain refinement in aluminium alloys. Materials Science and Technology, 1999, 15, 986-992.	1.6	47

#	Article	IF	CITATIONS
91	Tribological behaviour of Cu60Zr30Ti10 bulk metallic glass. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 458, 290-294.	5.6	47
92	A statistical analysis on erosion wear behaviour of A356 alloy reinforced with in situ formed TiB2 particles. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 476, 333-340.	5.6	47
93	Crystallization kinetics and consolidation of mechanically alloyed Al70Y16Ni10Co4 glassy powders. Journal of Alloys and Compounds, 2009, 477, 171-177.	5.5	47
94	Novel rare-earth and transition metal-based entropy stabilized oxides with spinel structure. Scripta Materialia, 2020, 178, 513-517.	5.2	47
95	Electrochemical behavior of multicomponent amorphous and nanocrystalline Zr-based alloys in different environments. Corrosion Science, 2006, 48, 2212-2225.	6.6	46
96	Three-dimensional visualization of the microstructure development of Sr-modified Al–15Si casting alloy using FIB-EsB tomography. Acta Materialia, 2010, 58, 6600-6608.	7.9	45
97	Effect of aggregation of methylene blue dye on TiO2 surface in self-cleaning studies. Catalysis Communications, 2010, 11, 518-521.	3.3	45
98	Comparison of corrosion behaviour of friction stir processed and laser melted AA 2219 aluminium alloy. Materials & Design, 2011, 32, 4502-4508.	5.1	44
99	A new thermodynamic parameter to predict glass forming ability in iron based multi-component systems containing zirconium. Intermetallics, 2013, 35, 73-81.	3.9	44
100	Maxwell–Wagner polarization in grain boundary segregated NiCuZn ferrite. Current Applied Physics, 2014, 14, 1727-1733.	2.4	44
101	Influence of welding process on Type IV cracking behavior of P91 steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 613, 148-158.	5.6	43
102	Formation of Nanocrystalline Particles in Glassy Matrix in Melt-Spun Mg–Cu–Y Based Alloys. Materials Transactions, JIM, 2000, 41, 1538-1544.	0.9	42
103	Effect of hot rolling and heat treatment of Al–5Ti–1B master alloy on the grain refining efficiency of aluminium. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2001, 301, 180-186.	5.6	42
104	Effect of prior microstructure on microstructure and mechanical properties of modified 9Cr–1Mo steel weld joints. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 477, 185-192.	5.6	42
105	Microstructural features of as-cast A356 alloy inoculated with Sr, Sb modifiers and Al–Ti–C grain refiner simultaneously. Materials Letters, 2008, 62, 273-275.	2.6	42
106	Mechanical activation of aluminothermic reduction of NiO by high energy ball milling. Journal of Alloys and Compounds, 2010, 497, 142-146.	5.5	42
107	Low temperature synthesis of dense TiB2 compacts by reaction spark plasma sintering. International Journal of Refractory Metals and Hard Materials, 2015, 48, 201-210.	3.8	42
108	Austenitic Oxide Dispersion Strengthened Steels : A Review. Defence Science Journal, 2016, 66, 316.	0.8	42

#	Article	IF	CITATIONS
109	Microstructure and the wear mechanism of grain-refined aluminum during dry sliding against steel disc. Wear, 2008, 264, 638-647.	3.1	41
110	Role of zirconium and impurities in grain refinement of aluminium lNith Al-Ti-B. Materials Science and Technology, 1997, 13, 769-777.	1.6	40
111	On icosahedral phase formation in mechanically alloyed Al70Cu20Fe10. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2000, 294-296, 65-67.	5.6	40
112	Structural changes in iron powder during ball milling. Materials Chemistry and Physics, 2010, 123, 247-253.	4.0	40
113	SYNTHESIS OF LEAD FREE SODIUM BISMUTH TITANATE (NBT) CERAMIC BY CONVENTIONAL AND MICROWAVE SINTERING METHODS. Journal of Advanced Dielectrics, 2011, 01, 71-77.	2.4	40
114	Electrical propeties of Gd-doped PZT nanoceramic synthesized by high-energy ball milling. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2004, 110, 58-63.	3.5	39
115	Investigation and characterization of Pb(Zr0.52Ti0.48)O3 nanocrystalline ferroelectric ceramics: By conventional and microwave sintering methods. Materials Chemistry and Physics, 2011, 126, 295-300.	4.0	39
116	Synthesis, characterization and demonstration of self-cleaning TiO2 coatings on glass and glazed ceramic tiles. Progress in Organic Coatings, 2013, 76, 1756-1760.	3.9	39
117	Recent advances in aluminium matrix composites reinforced with graphene-based nanomaterial: A critical review. Progress in Materials Science, 2022, 128, 100948.	32.8	39
118	Phase fields of nickel silicides obtained by mechanical alloying in the nanocrystalline state. Journal of Applied Physics, 2000, 87, 8393-8400.	2.5	38
119	Continuous drive friction welding of Inconel 718 and EN24 dissimilar metal combination. Materials Science and Technology, 2009, 25, 851-861.	1.6	38
120	Functionally Graded Al Alloy Matrix In-Situ Composites. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2010, 41, 242-254.	2.2	38
121	Effect of yttria particle size on the microstructure and compression creep properties of nanostructured oxide dispersion strengthened ferritic (Fe–12Cr–2W–0.5Y2O3) alloy. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 4579, 4584	5.6	38
122	Transition of Crack from Type IV to Type II Resulting from Improved Utilization of Boron in the Modified 9Cr-1Mo Steel Weldment. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 3724-3741.	2.2	38
123	Experimental assessment of the thermodynamic factor for diffusion in CoCrFeNi and CoCrFeMnNi high entropy alloys. Scripta Materialia, 2018, 157, 81-85.	5.2	38
124	Investigation and characterization of La-doped PZT nanocrystalline ceramic prepared by mechanical activation route. Materials Chemistry and Physics, 2008, 112, 31-34.	4.0	37
125	Influence of Al content on thermal stability of nanocrystalline AlxCoCrFeNi high entropy alloys at low and intermediate temperatures. Advanced Powder Technology, 2020, 31, 1985-1993.	4.1	37
126	Mechanical alloying of Al–Cu–Fe elemental powders. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2001, 304-306, 863-866.	5.6	36

#	Article	IF	CITATIONS
127	Dielectric relaxation studies of nanocrystalline CuAlO2 using modulus formalism. Journal of Applied Physics, 2007, 102, 104104.	2.5	36
128	Magnetoelectric effect of (100â^'x)BaTiO3–(x)NiFe1.98O4â€^(x=20–80â€,wt %) particulate nanocompo Applied Physics Letters, 2009, 94, .	osites.	36
129	Synthesis of in-situ NiAl–Al2O3 nanocomposite by reactive milling and subsequent heat treatment. Intermetallics, 2010, 18, 353-358.	3.9	36
130	Thermodynamic prediction of bulk metallic glass forming alloys in ternary Zr–Cu–X (X=Ag, Al, Ti, Ga) systems. Journal of Non-Crystalline Solids, 2011, 357, 3495-3499.	3.1	36
131	Grain-size-dependent non-monotonic lattice parameter variation in nanocrystalline W: The role of non-equilibrium grain boundary structure. Scripta Materialia, 2015, 98, 20-23.	5.2	36
132	Synthesis of Cu–W Nanocomposite by High-Energy Ball Milling. Journal of Nanoscience and Nanotechnology, 2007, 7, 2376-2381.	0.9	35
133	High strength nanocrystalline L12-Al3(Ti,Zr) intermetallic synthesized by mechanical alloying. Intermetallics, 2007, 15, 26-33.	3.9	35
134	Effect of Molybdenum and Niobium on the Phase Formation and Hardness of Nanocrystalline CoCrFeNi High Entropy Alloys. Journal of Nanoscience and Nanotechnology, 2014, 14, 8106-8109.	0.9	35
135	Micro and nano indentation studies on Zr60Cu10Al15Ni15 bulk metallic glass. Materials & Design, 2015, 65, 98-103.	5.1	35
136	Microstructural studies on nanocrystalline oxide dispersion strengthened austenitic (Fe–18Cr–8Ni–2W–0.25Y2O3) alloy synthesized by high energy ball milling and vacuum hot pressing. Journal of Materials Science, 2010, 45, 4858-4865.	3.7	34
137	Phase Formation in Equiatomic High Entropy Alloys: CALPHAD Approach and Experimental Studies. Transactions of the Indian Institute of Metals, 2012, 65, 375-380.	1.5	34
138	Strengthening mechanisms in CrMoNbTiW refractory high entropy alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 819, 141503.	5.6	34
139	Synthesis of quasicrystalline phase by mechanical alloying of Al ₇₀ Cu ₂₀ Fe ₁₀ . Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 2000, 80, 1207-1217.	0.6	33
140	Estimation of entrapped powder temperature during mechanical alloying. Scripta Materialia, 2004, 50, 1199-1202.	5.2	33
141	Prediction of Glass Forming Ability Using Thermodynamic Parameters. Transactions of the Indian Institute of Metals, 2012, 65, 559-563.	1.5	33
142	Formation of nanocrystalline phases in the Cu-Zn system during mechanical alloying. Journal of Materials Science, 1996, 31, 3207-3211.	3.7	32
143	On the infiltration behavior of Al, Al-Li, and Mg meltas through SiC p bed. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2000, 31, 319-325.	2.2	32
144	Gibb's free energy for the crystallization of glass forming liquids. Applied Physics Letters, 2003, 83, 671-673.	3.3	32

#	Article	IF	CITATIONS
145	Miedema model based methodology to predict amorphous-forming-composition range in binary and ternary systems. Journal of Alloys and Compounds, 2013, 550, 483-495.	5.5	32
146	Fabrication of W-Cu functionally graded composites using high energy ball milling and spark plasma sintering for plasma facing components. Advanced Powder Technology, 2020, 31, 3657-3666.	4.1	32
147	Reaction of fluoride salts with aluminium. Materials Science and Technology, 1996, 12, 766-770.	1.6	31
148	Al–Ti–C–Sr master alloy—A melt inoculant for simultaneous grain refinement and modification of hypoeutectic Al–Si alloys. Journal of Alloys and Compounds, 2009, 480, L49-L51.	5.5	30
149	Microstructure-hardness relationship of Al–(L12)Al3Ti nanocomposites prepared by rapid solidification processing. Intermetallics, 2010, 18, 487-492.	3.9	30
150	Influence of heating rate on the microstructure and magnetic properties of Fe3B/Nd2Fe14B nanocomposite magnets. Scripta Materialia, 2001, 45, 355-362.	5.2	29
151	Synthesis of nanocrystalline/quasicrystalline Mg32(Al,Zn)49by melt spinning and mechanical milling. Journal of Materials Science, 2004, 39, 5155-5159.	3.7	29
152	Thermodynamic modeling and composition design for the formation of Zr–Ti–Cu–Ni–Al high entropy bulk metallic glasses. Intermetallics, 2015, 65, 42-50.	3.9	29
153	On the modification and segregation behavior of Sb in Al–7Si alloy during solidification. Materials Letters, 2008, 62, 2013-2016.	2.6	28
154	On the conditions for the synthesis of bulk metallic glasses by mechanical alloying. Journal of Alloys and Compounds, 2008, 459, 135-141.	5.5	28
155	Equal channel angular pressing of Al–5wt% TiB2 in situ composite. Journal of Alloys and Compounds, 2008, 459, 239-243.	5.5	28
156	Settling behaviour of TiAl ₃ , TiB ₂ , TiC and AlB ₂ particles in liquid Al during grain refinement. International Journal of Cast Metals Research, 2010, 23, 193-204.	1.0	28
157	Formation of metastable phases and nanocomposite structures in rapidly solidified Al–Fe alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 5967-5973.	5.6	28
158	Synthesis of nanostructured Al–Mg–SiO2 metal matrix composites using high-energy ball milling and spark plasma sintering. Journal of Alloys and Compounds, 2012, 536, S35-S40.	5.5	28
159	Interplay Between Residual Stresses, Microstructure, Process Variables and Engine Block Casting Integrity. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 5258-5270.	2.2	28
160	Stability of quasicrystalline phase in Al–Cu–Fe, Al–Cu–Co and Al–Pd–Mn systems by high energy ball milling. Journal of Non-Crystalline Solids, 2004, 334-335, 48-51.	3.1	27
161	Electrochemical behaviour of amorphous and nanoquasicrystalline Zr–Pd and Zr–Pt alloys in different environments. Corrosion Science, 2005, 47, 2619-2635.	6.6	27
162	Structure of nanocomposites of Al-Fe alloys prepared by mechanical alloying and rapid solidification processing. Bulletin of Materials Science, 2008, 31, 449-454.	1.7	27

#	Article	IF	CITATIONS
163	Development of in situ NiAl–Al2O3 nanocomposite by reactive milling and spark plasma sintering. Journal of Alloys and Compounds, 2011, 509, S223-S228.	5.5	27
164	Microstructure and mechanical properties of as-cast and T6 treated Sc modified A356-5TiB2 in-situ composite. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 739, 383-394.	5.6	27
165	Evaluating the influence of microstructural attributes: Fraction, composition, size and spatial distribution of phases on the oxidation behaviour of high-entropy alloys. Corrosion Science, 2021, 184, 109381.	6.6	27
166	Influence of Fe and Cr on the disordering behavior of mechanically alloyed NiAl. Scripta Materialia, 1996, 7, 691-697.	0.5	26
167	Nanocrystalline phases in Cuî—,Ni, Cuî—,Zn and Niî—,Al systems by mechanical alloying. Scripta Materialia, 1997, 9, 149-152.	0.5	26
168	Nanostructured icosahedral phase formation in Al70Cu20Fe10 by mechanical alloying: Comprehensive study. Journal of Applied Physics, 2002, 91, 5353-5359.	2.5	26
169	Transformation of the decagonal quasicrystalline phase to a B2 crystalline phase in the Al-Cu-Co system by high-energy ball milling. Philosophical Magazine Letters, 2002, 82, 383-392.	1.2	26
170	Formation of novel microstructures in conventionally cast Al–Fe–V–Si alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2003, 355, 193-200.	5.6	26
171	Influence of thermo-mechanical processing of Al–5Ti–1B master alloy on its grain refining efficiency. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 364, 75-83.	5.6	26
172	Thermodynamic and Topological Modeling and Synthesis of Cu-Zr-Ti-Ni–Based Bulk Metallic Glasses by Mechanical Alloying. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2008, 39, 1543-1551.	2.2	26
173	Effects of base and filler chemistry and weld techniques on equiaxed zone formation in Al–Zn–Mg alloy welds. Science and Technology of Welding and Joining, 2008, 13, 598-606.	3.1	26
174	Fabrication and Response of Al ₇₀ Y ₁₆ Ni ₁₀ Co ₄ Glass Reinforced Metal Matrix Composites. Materials and Manufacturing Processes, 2011, 26, 1242-1247.	4.7	26
175	Kinetic modification of the â€~confusion principle' for metallic glass formation. Scripta Materialia, 2016, 116, 7-10.	5.2	26
176	Microstructural homogenization and substantial improvement in corrosion resistance of mechanically alloyed FeCoCrNiCu high entropy alloys by incorporation of carbon nanotubes. Materialia, 2020, 14, 100917.	2.7	26
177	Influence of heat of formation of B2/L12 intermetallic compounds on the milling energy for their formation during mechanical alloying. Journal of Alloys and Compounds, 2008, 465, 106-112.	5.5	25
178	Effect of grain size on the electrical properties of high dense BPT nanocrystalline ferroelectric ceramics. Ceramics International, 2014, 40, 1781-1788.	4.8	25
179	Amorphization in equiatomic high entropy alloys. Journal of Non-Crystalline Solids, 2015, 413, 8-14.	3.1	25
180	Deformation behaviour of in-situ TiB 2 reinforced A357 aluminium alloy composite foams under compressive and impact loading. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 684, 178-185.	5.6	25

#	Article	IF	CITATIONS
181	Gibbs energy-composition plots as a tool for high-entropy alloy design. Journal of Alloys and Compounds, 2018, 768, 358-367.	5.5	25
182	Phase evolution of refractory high-entropy alloy CrMoNbTiW during mechanical alloying and spark plasma sintering. Journal of Materials Research, 2019, 34, 756-766.	2.6	25
183	A new approach for synthesis of ZnO nanorod flowerets and subsequent pure free-standing ZnO nanorods. Advanced Powder Technology, 2019, 30, 30-41.	4.1	25
184	The influence of room temperature and cryogenic temperature rolling on the aging and wear behaviour of Al–4Cu–5TiB2 in situ composites. Journal of Alloys and Compounds, 2009, 479, 268-273.	5.5	24
185	Initial-stage Sintering Kinetics of Nanocrystalline Tungsten. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2011, 42, 3863-3866.	2.2	24
186	Effect of DC bias on electrical conductivity of nanocrystalline $\hat{1}\pm$ -CuSCN. AIP Advances, 2011, 1, .	1.3	24
187	Enhanced magnetoelectric properties in lead-free Ni0.83Co0.15Cu0.02Fe1.9O4-δ–Na0.5Bi0.5TiO3 composites by spark plasma sintering. Scripta Materialia, 2014, 82, 9-12.	5.2	24
188	Topologically Close-packed Phase Formation in High Entropy Alloys: A Review of Calphad and Experimental Results. Jom, 2017, 69, 2113-2124.	1.9	24
189	Challenges in design and development of high entropy alloys: A thermodynamic and kinetic perspective. Scripta Materialia, 2020, 188, 37-43.	5.2	24
190	On the criteria for the formation of nanoquasicrystalline phase. Applied Physics Letters, 2004, 84, 1674-1676.	3.3	23
191	Low temperature synthesis of dense and ultrafine grained zirconium diboride compacts by reactive spark plasma sintering. Scripta Materialia, 2016, 110, 78-81.	5.2	23
192	Phase evolution and mechanical properties of novel nanocrystalline Y2(TiZrHfMoV)2O7 high entropy pyrochlore. Journal of Materials Science and Technology, 2021, 82, 214-226.	10.7	23
193	Optical and Electrical Properties of Mechanochemically Synthesized Nanocrystalline Delafossite CuAlO ₂ . Journal of Nanoscience and Nanotechnology, 2008, 8, 4273-4278.	0.9	22
194	Characterization of silver selenide thin films grown on Cr overed Si substrates. Surface and Interface Analysis, 2009, 41, 170-178.	1.8	22
195	Synthesis of amorphous phase in Tiî—,Niî—,Cu system by mechanical alloying. Scripta Metallurgica Et Materialia, 1990, 24, 1819-1824.	1.0	21
196	Synthesis of nanocrystalline NiAl over a wide composition range by mechanical alloying. Bulletin of Materials Science, 1996, 19, 565-571.	1.7	21
197	Oxidation behavior of multicomponent Zr-based amorphous alloys. Journal of Alloys and Compounds, 2007, 433, 162-170.	5.5	21
198	Spark plasma sintered Sm ₂ Co ₁₇ –FeCo nanocomposite permanent magnets synthesized by high energy ball milling. Nanotechnology, 2008, 19, 335701.	2.6	21

#	ARTICLE	IF	CITATIONS
199	Crystallization kinetics of Zr65Ag5Cu12.5Ni10Al7.5 glassy powders produced by ball milling of pre-alloyed ingots. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 513-514, 279-285.	5.6	21
200	Processing and characterization of in-situ TiB2 stabilized closed cell aluminium alloy composite foams. Materials and Design, 2016, 101, 245-253.	7.0	21
201	Porosity alleviation and mechanical property improvement of strontium modified A356 alloy by ultrasonic treatment. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 724, 586-593.	5.6	21
202	Effect of mechanical activation on synthesis of ultrafine Si3N4–MoSi2 in situ composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 382, 321-327.	5.6	20
203	Identification of compositions with highest glass forming ability in multicomponent systems by thermodynamic and topological approaches. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 449-451, 211-214.	5.6	20
204	Influence of oxides on the stability of zinc foam. Journal of Materials Science, 2011, 46, 7806-7814.	3.7	20
205	Prediction of Bulk Metallic Glass Formation in Cu–Zr–Ag–Hf System by Thermodynamic and Topological Modeling. Transactions of the Indian Institute of Metals, 2012, 65, 827-831.	1.5	20
206	Effect of Boron Addition and Initial Heat-Treatment Temperature on Microstructure and Mechanical Properties of Modified 9Cr-1Mo Steels Under Different Heat-Treatment Conditions. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44, 2171-2186.	2.2	20
207	Influence of mechanically activated annealing on phase evolution in Al0.3CoCrFeNi high-entropy alloy. Journal of Materials Science, 2019, 54, 14588-14598.	3.7	20
208	Localized pore evolution assisted densification during spark plasma sintering of nanocrystalline W-5wt.%Mo alloy. Scripta Materialia, 2019, 159, 41-45.	5.2	20
209	Effect of Al addition and homogenization treatment on the magnetic properties of CoFeMnNi high-entropy alloy. Journal of Materials Science, 2020, 55, 17204-17217.	3.7	20
210	Mechanical alloying—a novel synthesis route for amorphous phases. Bulletin of Materials Science, 1993, 16, 1-17.	1.7	19
211	Nanocrystalline phase formation and extension of solid solubility by mechanical alloying in Ti-based systems. Scripta Materialia, 1993, 3, 459-467.	0.5	19
212	Synthesis of nanocrystalline alloys and intermetallics by mechanical alloying. Bulletin of Materials Science, 1996, 19, 939-956.	1.7	19
213	Study on aluminium-based single films. Physical Chemistry Chemical Physics, 2007, 9, 6415.	2.8	19
214	Ferromagnetic-Dielectric Ni _{0.5Z} n _{0.5} Fe _{1.9} O _{4â^îî} /PbZr _{0.52} Ti _{0.48< Composites: Electric, Magnetic, Mechanical, and Electromagnetic Properties. Advances in Condensed Matter Physics, 2010, 2010, 1-14.}	/sub>O <s< td=""><td>ub>3F</td></s<>	ub>3F
215	Production, Kinetic Study and Properties of Fe-Based Glass and Its Composites. Materials and Manufacturing Processes, 2010, 25, 592-597.	4.7	19
216	Hot hardness behaviour of ultrafine grained ferritic oxide dispersion strengthened alloys prepared by mechanical alloving and spark plasma sintering. Materials Science & (amp; Engineering A: Structural)	5.6	19

mechanical alloying and spark plasma sintering. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 558, 492-496. 216

#	Article	IF	CITATIONS
217	Synthesis, characterization and mechanical behaviour of an in situ consolidated nanocrystalline FeCrNi alloy. Journal of Materials Science, 2012, 47, 1562-1566.	3.7	19
218	Crystallographic-shear-phase-driven W18O49 nanowires growth on nanocrystalline W surfaces. Scripta Materialia, 2016, 115, 28-32.	5.2	19
219	CALPHAD and rule-of-mixtures: A comparative study for refractory high entropy alloys. Intermetallics, 2020, 127, 106926.	3.9	19
220	Thermoelectric properties of half-Heusler high-entropy Ti2NiCoSn1-xSb1+ (xÂ=Â0.5, 1) alloys with VEC>18. Scripta Materialia, 2020, 186, 375-380.	5.2	19
221	Influence of chromium and impurities on the grain- refining behavior of aluminum. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1996, 27, 791-800.	2.2	18
222	Influence of thermo-mechanical treatment of Al–5Ti master alloy on its grain refining performance on aluminium. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2003, 351, 237-243.	5.6	18
223	Improvement in tensile strength and load bearing capacity during dry wear of Al–7Si alloy by combined grain refinement and modification. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 395, 323-326.	5.6	18
224	Nanocrystalline Pb(Zr _{0.52} Ti _{0.48})O ₃ Ferroelectric Ceramics: Mechanical and Electrical Properties. Journal of Nanomaterials, 2010, 2010, 1-8.	2.7	18
225	Investigation of microstructure and microhardness of pure W and W-2Y2O3 materials before and after ion-irradiation. International Journal of Refractory Metals and Hard Materials, 2014, 46, 168-172.	3.8	18
226	Dielectric, magnetic and enhanced magnetoelectric response in high energy ball milling assisted BST-NZF particulate composite. Materials Chemistry and Physics, 2015, 167, 338-346.	4.0	18
227	Effect of Sn Substitution on the Thermoelectric Properties of Synthetic Tetrahedrite. ACS Applied Materials & Interfaces, 2019, 11, 21686-21696.	8.0	18
228	Face-centered-cubic to Hexagonal-close-packed Transformation in Nanocrystalline Ni(Si) by Mechanical Alloying. Journal of Materials Research, 2000, 15, 1429-1432.	2.6	17
229	Size effect of Pb0.92Nd0.08(Zr0.53Ti0.47)0.98O3 nanoceramic synthesized by high-energy ball milling. Journal of Applied Physics, 2005, 98, 104305.	2.5	17
230	Temperature and structure dependency of solid–liquid interfacial energy. Acta Materialia, 2009, 57, 3422-3430.	7.9	17
231	Effect of TiAl3 particles size and distribution on their settling and dissolution behaviour in aluminium. Journal of Materials Science, 2010, 45, 2921-2929.	3.7	17
232	A comparative study of structural and electrical properties ofÂBa0.8Pb0.2TiO3 nanocrystalline ceramics prepared by microwave andÂspark plasma sintering. Materials Chemistry and Physics, 2013, 142, 686-691.	4.0	17
233	Synthesis of nanocrystalline half-Heusler TiNiSn by mechanically activated annealing. Materials Letters, 2017, 205, 114-117.	2.6	17
234	Stability of nanocrystalline disordered NiAl synthesized by mechanical alloying. Philosophical Magazine Letters, 2002, 82, 469-475.	1.2	16

#	Article	IF	CITATIONS
235	Prediction of maximum homogeneous nucleation temperature for crystallization of metallic glasses. Journal of Non-Crystalline Solids, 2006, 352, 5257-5264.	3.1	16
236	Effect of milling energy on mechanical activation of (Mo+Si3N4) powders during the synthesis of Si3N4–MoSi2 in situ composites. Journal of the European Ceramic Society, 2009, 29, 2069-2077.	5.7	16
237	Influence of bias voltage on dielectric relaxation of nanocrystalline anatase TiO2 using modulus formalism. Journal of Applied Physics, 2011, 109, .	2.5	16
238	Effect of Aluminum-Titanium-Boron Based Grain Refiners on AZ91E Magnesium Alloy Grain Size and Microstructure. International Journal of Metalcasting, 2011, 5, 29-41.	1.9	16
239	Analysis of the secondary phases in the microstructure of 319 type Al alloy engine blocks using electron microscopy and nanoindentation. Transactions of the Indian Institute of Metals, 2011, 64, 7-11.	1.5	16
240	Micro indentation study on Cu60Zr20Ti20 metallic glass. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 550, 160-166.	5.6	16
241	XRD Characterization of Microstructural Evolution During Mechanical Alloying of W-20Âwt%Mo. Transactions of the Indian Institute of Metals, 2013, 66, 409-414.	1.5	16
242	Composite of medium entropy alloys synthesized using spark plasma sintering. Scripta Materialia, 2021, 191, 46-51.	5.2	16
243	Effect of TiB2 particles on aging response of Al–4Cu alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 386, 296-300.	5.6	16
244	Precipitation kinetics in Al-Si-Mg/TiB2 in-situ composites. Transactions of the Indian Institute of Metals, 2011, 64, 123-126.	1.5	15
245	Influence of Mg on Grain Refinement of Near Eutectic Al-Si Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2011, 42, 2028-2039.	2.2	15
246	Dilatometric analysis on shrinkage behavior during non-isothermal sintering of nanocrystalline tungsten mechanically alloyed with molybdenum. Journal of Alloys and Compounds, 2012, 536, S41-S44.	5.5	15
247	Ultrafine-grained, high-strength NiAl with Al2O3 and Al4C3 nanosized particles dispersed via mechanical alloying in toluene with spark plasma sintering. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 585, 379-386.	5.6	15
248	Carbide-Free Bainitic Weld Metal: A New Concept in Welding of Armor Steels. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2014, 45, 2327-2337.	2.1	15
249	Multiferroic properties of lead-free Ni0.5Zn0.5Fe1.9O4â^'δâ^'Na0.5Bi0.5TiO3 composites synthesized by spark plasma sintering. Ceramics International, 2015, 41, 6882-6888.	4.8	15
250	Bio-corrosion and Cytotoxicity Studies on Novel Zr55Co30Ti15 and Cu60Zr20Ti20 Metallic Glasses. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 2422-2430.	2.2	15
251	Densification mechanisms during reactive spark plasma sintering of Titanium diboride and Zirconium diboride. Philosophical Magazine, 2017, 97, 1588-1609.	1.6	15
252	An Overview of High-energy Ball Milled Nanocrystalline Aluminum Alloys. SpringerBriefs in Materials, 2017, , .	0.3	15

#	Article	IF	CITATIONS
253	Thermoelectric properties of Co4Sb12with Bi2Te3nanoinclusions. Journal of Physics Condensed Matter, 2018, 30, 095701.	1.8	15
254	Simultaneous increase in thermopower and electrical conductivity through Ta-doping and nanostructuring in half-Heusler TiNiSn alloys. Materialia, 2019, 7, 100410.	2.7	15
255	Novel Multicomponent B2-Ordered Aluminides: Compositional Design, Synthesis, Characterization, and Thermal Stability. Metals, 2020, 10, 1411.	2.3	15
256	Alloying behaviour in nanocrystalline materials during mechanical alloying. Bulletin of Materials Science, 1999, 22, 321-327.	1.7	14
257	Internal friction and longitudinal modulus behaviour of multiferroic PbZr _{0.52} Ti _{0.48} O ₃ +Ni _{0.93} Co _{0.02} Mn _{0.05 composites. Journal Physics D: Applied Physics, 2007, 40, 7565-7571.}	5< ∕⊉s& ıb≻Fe	<suab>1.95<</suab>
258	On the prediction of solid–liquid interfacial energy of glass forming liquids from homogeneous nucleation theory. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 454-455, 654-661.	5.6	14
259	Identification of Bulk Metallic Forming Compositions through Thermodynamic and Topological Models. Materials Science Forum, 0, 649, 67-73.	0.3	14
260	Development of Ni-Al2O3 In-Situ Nanocomposite by Reactive Milling and Spark Plasma Sintering. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2011, 42, 2085-2093.	2.2	14
261	Effect of Re on microstructural evolution and densification kinetics during spark plasma sintering of nanocrystalline W. Advanced Powder Technology, 2019, 30, 2779-2786.	4.1	14
262	Low temperature synthesis of nanocrystalline Y2Ti2O7, Y2Zr2O7, Y2Hf2O7 with exceptional hardness by reverse co-precipitation technique. Journal of Alloys and Compounds, 2020, 837, 155491.	5.5	14
263	Electrical and Magnetic Properties of Nanocrystalline BiFeO ₃ Prepared by High Energy Ball Milling and Microwave Sintering. Journal of Nanoscience and Nanotechnology, 2011, 11, 4097-4102.	0.9	13
264	Microstructure and Mechanical Property of Fe-Al ₂ O ₃ Nanocomposites Synthesized by Reactive Milling Followed by Spark Plasma Sintering. Materials Science Forum, 0, 710, 291-296.	0.3	13
265	Magnetoelectric properties of lead-free Ni0.93Co0.02Mn0.05Fe1.95O4–Na0.5Bi0.5TiO3 multiferroic composites synthesized by spark plasma sintering. Journal of Magnetism and Magnetic Materials, 2015, 386, 44-49.	2.3	13
266	Effect of milling on the oxidation kinetics of Aluminium +†Boron mixture and nanocrystalline Aluminium Boride (AlB12). Thermochimica Acta, 2019, 678, 178306.	2.7	13
267	Enhanced Thermoelectric Performance in the Ba _{0.3} Co ₄ Sb ₁₂ /InSb Nanocomposite Originating from the Minimum Possible Lattice Thermal Conductivity. ACS Applied Materials & Interfaces, 2020, 12, 48729-48740.	8.0	13
268	On the effect of Fe in L12 strengthened Al–Co–Cr–Fe–Ni–Ti complex concentrated alloy. Materialia, 2020, 14, 100909.	2.7	13
269	Influence of processing route on the alloying behavior, microstructural evolution and thermal stability of CrMoNbTiW refractory high-entropy alloy. Journal of Materials Research, 2020, 35, 1556-1571.	2.6	13
270	Friction Welding of Titanium to 304L Stainless Steel Using Interlayers. Praktische Metallographie/Practical Metallography, 2011, 48, 188-207.	0.3	13

#	Article	IF	CITATIONS
271	Response of an Al—Cr alloy towards grain refinement by Al—5Ti-1B master alloy. International Journal of Cast Metals Research, 1996, 9, 125-132.	1.0	12
272	An investigation on the transformation of the decagonal phase to a B2 phase in Al–Cu–Co alloy during mechanical milling. Journal of Alloys and Compounds, 2002, 342, 38-41.	5.5	12
273	Synthesis of (Al65Cu20Fe15)100â^'xSix quasicrystalline alloys by mechanical alloying. Journal of Non-Crystalline Solids, 2004, 334-335, 44-47.	3.1	12
274	Effect of dehydration rate on non-hydrolytic TiO2 thin film processing: Structure, optical and photocatalytic performance studies. Materials Chemistry and Physics, 2011, 129, 810-815.	4.0	12
275	Effect of DC bias on dielectric properties of nanocrystalline CuAlO2. Electronic Materials Letters, 2013, 9, 207-211.	2.2	12
276	Temperature and frequency dependent electrical properties of NiCuZn ferrite with CuO-rich grain boundary segregation. Journal of Alloys and Compounds, 2014, 595, 206-212.	5.5	12
277	Graphene nanoplatelets induce crystallographic texturing during reactive spark plasma sintering of titanium diboride. Carbon, 2018, 133, 323-334.	10.3	12
278	Tribological and corrosion performance of an atmospheric plasma sprayed AlCoCr0.5Ni high-entropy alloy coating. Wear, 2022, 506-507, 204443.	3.1	12
279	Differences in the glass-forming ability of rapidly solidified and mechanically alloyed Ti-Ni-Cu alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1995, 196, 237-241.	5.6	11
280	On Prediction of Amorphous Phase Forming Compositions in the Iron-Rich Fe-Zr-B Ternary System and Their Synthesis. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2011, 42, 3913-3920.	2.2	11
281	Two strain-hardening mechanisms in nanocrystalline austenitic steel: An in situ synchrotron X-ray diffraction study. Scripta Materialia, 2012, 66, 690-693.	5.2	11
282	Microwave sintering effect on structural and dielectrical properties of Ba1â^'x(Sr/Pb)xTiO3 (xÂ=Â0.2 for) Tj ETQq	0 0 0 rgBT	/Qyerlock 1
283	Crystallite size effect on voltage tunable giant dielectric permittivity of nanocrystalline CuO. Electronic Materials Letters, 2013, 9, 59-62.	2.2	11
284	Thermodynamic Basis for Glass Formation in Cu-Zr Rich Ternary Systems and Their Synthesis by Mechanical Alloying. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 2363-2370.	2.2	11
285	Design of a novel Al–Ti–Zr light-weight alloy: CALPHAD and experiments. Journal of Alloys and Compounds, 2020, 835, 155304.	5.5	11
286	Evolution of phase constitution with mechanical alloying and spark plasma sintering of nanocrystalline AlxCoCrFeNi (x = 0, 0.3, 0.6, 1Amol) high-entropy alloys. Journal of Materials Research, 2022, 37, 959-975.	2.6	11
287	Oxidation behavior of amorphous and nanoquasicrystalline Zr–Pd and Zr–Pt alloys. Journal of Alloys and Compounds, 2008, 460, 172-181.	5.5	10
288	Thermodynamic modeling of Zr-Ti-Cu-Ni-Be bulk metallic glass. Transactions of the Indian Institute of Metals. 2009. 62, 413-416.	1.5	10

#	Article	IF	CITATIONS
289	Investigation of Structural and Diffuse Phase Transition of New Nano Lead-Free System xBAO–ÂyBZTÂâ^'Â(1Ââ^'ÂxÂâr'Ây) BCT. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44, 5241-5250.	2.2	10
290	Porous copper template from partially spark plasma-sintered Cu-Zn aggregate via dezincification. Bulletin of Materials Science, 2014, 37, 743-752.	1.7	10
291	Origin of magnetocapacitance in chemically homogeneous and inhomogeneous ferrites. Physical Chemistry Chemical Physics, 2015, 17, 2432-2437.	2.8	10
292	Tracer diffusion in ordered pseudo-binary multicomponent aluminides. Scripta Materialia, 2020, 178, 227-231.	5.2	10
293	Suppression of Ïf-phase in nanocrystalline CoCrFeMnNiV high entropy alloy by unsolicited contamination during mechanical alloying and spark plasma sintering. Materials Chemistry and Physics, 2020, 255, 123558.	4.0	10
294	Icosahedral Phase Formation Domain in Al–Cu–Fe System by Mechanical Alloying. Journal of Materials Research, 2002, 17, 653-659.	2.6	9
295	Synthesis of Si3N4–MoSi2 in situ composite from mechanically activated (Mo+Si3N4) powders. Journal of Alloys and Compounds, 2004, 381, 254-257.	5.5	9
296	Nanocrystalline Zn Doped PZT Synthesized by Mechanical Alloying. Ferroelectrics, 2005, 325, 65-74.	0.6	9
297	Atomic force microscopy study of thermal stability of silver selenide thin films grown on silicon. Applied Surface Science, 2006, 252, 7975-7982.	6.1	9
298	Studies on hot-rolled galvanized steel sheets: Segregation of alloying elements at the surface. Scripta Materialia, 2008, 59, 522-525.	5.2	9
299	Size effect studies on nanocrystalline Pb(Zr0.53Ti0.47)O3 synthesized by mechanical activation route. Materials Chemistry and Physics, 2009, 117, 338-342.	4.0	9
300	Design of an Ideal Grain-Refiner Alloy for Al-7Si Alloy Using Artificial Neural Networks. Journal of Materials Engineering and Performance, 2013, 22, 696-699.	2.5	9
301	Corrosion characterization on melt spun Cu60Zr20Ti20 metallic glass: An experimental case study. Journal of Non-Crystalline Solids, 2013, 379, 48-53.	3.1	9
302	Grain size dependent phase transition and superparaelectric behavior of ferroelectric BST. Physica B: Condensed Matter, 2015, 461, 10-16.	2.7	9
303	Strength–Ductility Synergy in High Entropy Alloys by Tuning the Thermo-Mechanical Process Parameters: A Comprehensive Review. Journal of the Indian Institute of Science, 2022, 102, 91-116.	1.9	9
304	Crystallization studies on amorphous AI-Y-Ni and AI-Y-Cu alloys. Journal of Materials Science, 1993, 28, 6091-6095.	3.7	8
305	Corrosion and oxidation behavior of amorphous and nanoquasicrystalline phases in Zr70Pd30 and Zr80Pt20 alloys. Journal of Non-Crystalline Solids, 2004, 334-335, 544-547.	3.1	8
306	On amorphization and nanocomposite formation in Al-Ni-Ti system by mechanical alloying. Pramana - Journal of Physics, 2005, 65, 831-840.	1.8	8

#	Article	IF	CITATIONS
307	Influence of thermodynamics and local geometry on glass formation in Zr based alloys. Applied Physics Letters, 2008, 93, 061903.	3.3	8
308	Studies on hot rolled galvanized steel sheets: Effect of reheating on galvanizing. Surface and Coatings Technology, 2009, 203, 3465-3471.	4.8	8
309	Characterization of Ferrite in Tempered Martensite of Modified 9Cr-1Mo Steel Using the Electron Backscattered Diffraction Technique. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2011, 42, 3849-3852.	2.2	8
310	Analysis of Mechanical Milling in Simoloyer: An Energy Modeling Approach. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 1323-1327.	2.2	8
311	Photo-induced monomer/dimer kinetics in methylene blue degradation over doped and phase controlled nano-TiO2 films. RSC Advances, 2016, 6, 43563-43573.	3.6	8
312	Comparison of Different Processing Routes for the Synthesis of Semiconducting AlSb. Journal of Materials Engineering and Performance, 2018, 27, 6196-6205.	2.5	8
313	Mechanochemical synthesis of nanocrystalline aluminium boride (AlB12). Ceramics International, 2018, 44, 20105-20110.	4.8	8
314	Dealloying kinetics and mechanism of porosity evolution in mechanically alloyed Ag25Zn75 powder particles. Corrosion Science, 2018, 139, 155-162.	6.6	8
315	Atomic transport in B2-ordered Al(Fe,Ni) alloys: Tracer-interdiffusion couple approach. Intermetallics, 2020, 126, 106920.	3.9	8
316	Preferential phonon scattering and low energy carrier filtering by interfaces of <i>in situ</i> formed InSb nanoprecipitates and GaSb nanoinclusions for enhanced thermoelectric performance of In _{0.2} Co ₄ Sb ₁₂ . Dalton Transactions, 2020, 49, 15883-15894.	3.3	8
317	Room temperature dynamic indentation response of partially crystallized Zr–Cu metallic glass. Journal of Alloys and Compounds, 2020, 834, 155161.	5.5	8
318	Phase Transitions Of The Ferroelectric Na0.5Bi0.5TiO3 By Dielectric And Internal Friction Measurements. Advanced Materials Letters, 2015, 6, 27-32.	0.6	8
319	Thermoelectric properties of a high entropy half-Heusler alloy processed by a fast powder metallurgy route. Journal of Alloys and Compounds, 2022, 924, 166108.	5.5	8
320	Effect of non-stoichiometry on the ordering behaviour of nanocrystalline NiAl produced by mechanical alloying. Journal of Materials Science Letters, 1996, 15, 2171.	0.5	7
321	Surface oxides and their effect on the oxidation behavior of amorphous and nanoquasicrystalline Zr–Pd and Zr–Pt alloys. Journal of Materials Research, 2006, 21, 639-646.	2.6	7
322	Thermal Stability of Vacuum Hot Pressed Bulk Nanostructured Al-Cu Alloys. Materials Science Forum, 0, 690, 234-237.	0.3	7
323	Understanding room temperature deformation behavior through indentation studies on modified 9Cr–1Mo steel weldments. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 552, 419-426.	5.6	7
324	Thermodynamic criteria for bulk metallic glass formation in Zr rich quaternary system. , 2012, , .		7

#	Article	IF	CITATIONS
325	Effect of Boron on Creep Behaviour of Inter-Critically Annealed Modified 9Cr-1Mo Steel. Procedia Engineering, 2013, 55, 402-407.	1.2	7
326	Influence of Coincidence Site Lattice Boundary on Creep Resistance of P91 Steel Weldments. Procedia Engineering, 2014, 86, 80-87.	1.2	7
327	Structural, dielectric and ferroelectric properties of lead-free Na0.5Bi0.5TiO3 ceramics prepared by spark plasma sintering technique. Indian Journal of Physics, 2016, 90, 131-138.	1.8	7
328	Novel coalescence-driven grain-growth mechanism during annealing/spark plasma sintering of NiO nanocrystals. Journal of the European Ceramic Society, 2017, 37, 4973-4977.	5.7	7
329	A two-step method for synthesis of micron sized nanoporous silver powder and ZnO nanoparticles. Advanced Powder Technology, 2017, 28, 2532-2541.	4.1	7
330	Effect of Processing Routes on the Microstructure and Thermoelectric Properties of Half-Heusler TiFe0.5Ni0.5Sb1â^'xSnx (xÂ=Â0, 0.05, 0.1, 0.2) Alloys. Journal of Materials Engineering and Performance, 2022, 31, 305-317.	2.5	7
331	High-Energy Ball Milling Parameters in Production of Nanocrystalline Al Alloys. SpringerBriefs in Materials, 2017, , 7-28.	0.3	7
332	Thermal stability of nanocrystalline fcc and hcp Ni(Si) synthesized by mechanical alloying of Ni90Si10. Philosophical Magazine Letters, 2001, 81, 77-84.	1.2	6
333	Oxidation behavior of Al–Cu–Fe nanoquasicrystal powders. Journal of Non-Crystalline Solids, 2004, 334-335, 540-543.	3.1	6
334	Formation of nanostructured and amorphous β-Al3Mg2 based alloys by rapid solidification and mechanical milling. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 5078-5083.	5.6	6
335	MAGNETO-ELECTRIC EFFECT IN MULTIFERROIC Ni _{0.93} Co _{0.02} Mn _{0.05} <font PARTICULATE COMPOSITES: DIELECTRIC, PIEZOELECTRIC PROPERTIES. Modern Physics Letters B, 2011, 25, 345-358.Fe	_{1.95<}
336	Study of Deformation Behavior of Simulated Inter-Critical Heat-Affected Zones of Modified 9Cr-1Mo Steel. Materials and Manufacturing Processes, 2011, 26, 62-65.	4.7	6
337	Thermodynamic Model and Synthesis of Bulk Metallic Glass in Cu-Zr-Ti System by Mechanical Alloying. Materials Science Forum, 0, 675-677, 189-192.	0.3	6
338	Effect of Al-Ti-B Based Master Alloys on Grain Refinement and Hot Tearing Susceptibility of AZ91E Magnesium Alloy. Materials Science Forum, 0, 690, 351-354.	0.3	6
339	Effect of Y2O3 on Spark Plasma Sintering Kinetics of Nanocrystalline 9Cr-1Mo Ferritic Oxide Dispersion-Strengthened Steels. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44, 4037-4041.	2.2	6
340	Identifying non-equiatomic high entropy bulk metallic glass formers through thermodynamic approach: A theoretical perspective. Journal of Non-Crystalline Solids, 2016, 450, 164-173.	3.1	6
341	Anomalous behavior of glass-forming ability and mechanical response in a series of equiatomic binary to denary metallic glasses. Materialia, 2020, 9, 100505.	2.7	6
342	Thermodynamics of glass formation in pure metals. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 1995, 19, 297-304.	1.6	5

#	Article	IF	CITATIONS
343	APFIM and TEM study of the oxygen behavior during crystallization of Zr65Cu27.5Al7.5 metallic glass. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2001, 304-306, 706-709.	5.6	5
344	Characterization of microstructure and precipitation behavior in Al-4Cu-xTiB2 in-situ composite. Transactions of the Indian Institute of Metals, 2011, 64, 117-121.	1.5	5
345	Microstructural and Mechanical Characterization of Two Aluminium Based In Situ Composite Foams. Transactions of the Indian Institute of Metals, 2012, 65, 595-600.	1.5	5
346	Spark Plasma Sintering Temperature Effect on Structural, Dielectric and Ferroelectric Properties of Ba0.9Sr0.1TiO3 Nanocrystalline Ceramics. Journal of Electronic Materials, 2015, 44, 4308-4315.	2.2	5
347	Synthesis of hydrophobic Ni-VN alloy powder by ball milling. Advanced Powder Technology, 2019, 30, 1600-1610.	4.1	5
348	Microstructure of Rapidly Solidified High Strength Al ₉₄ V ₄ Fe ₂ Alloy. Materials Transactions, 2003, 44, 1993-1998.	1.2	4
349	Nanoscale Structure–Property Relations in Sm Modified Lead Zirconate Titanate. Journal of Nanoscience and Nanotechnology, 2009, 9, 3106-3111.	0.9	4
350	Synthesis of Nanocrystalline α-Al2O3 from Nanocrystalline Boehmite Derived from High Energy Ball Milling of Gibbiste. Transactions of the Indian Institute of Metals, 2011, 64, 535-540.	1.5	4
351	Influence of Surfactant Variation on Effective Anisotropy and Magnetic Properties of Mechanically Milled Magnetite Nanoparticles and Their Biocompatibility. IEEE Transactions on Magnetics, 2014, 50, 1-4.	2.1	4
352	Formation of quasicrystalline related intermetallic compounds in conventionally cast Al–Fe–V–Si alloy. Journal of Non-Crystalline Solids, 2004, 334-335, 29-32.	3.1	3
353	Nanoindentation Studies on Amorphous, Nanoquasicrystalline and Nanocrystalline Zr80Pt20 and Zr75Pd25 Alloys. Journal of Nanoscience and Nanotechnology, 2007, 7, 658-662.	0.9	3
354	Development of a Thermodynamic Criterion to Predict the Alloy Compositions for Amorphous and Nanocrystalline Phase Formation during Mechanical Alloying. Defect and Diffusion Forum, 0, 279, 147-151.	0.4	3
355	CONSOLIDATION OF CNT-REINFORCED AA4032 NANOCOMPOSITES BY ECAP. International Journal of Nanoscience, 2011, 10, 233-236.	0.7	3
356	Synthesis and Characterization of Spark Plasma Sintered FeAl and In situ FeAl–Al2O3 Composite. Transactions of the Indian Institute of Metals, 2013, 66, 419-424.	1.5	3
357	Influence of TiB2 Addition on the Precipitation Kinetics in Al-7Si-0.3Mg In Situ TiB2 Composites. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 2844-2849.	2.2	3
358	Interpreting room temperature deformation of Zr 67 Cu 33 metallic glass through Voronoi cluster dynamics. Journal of Non-Crystalline Solids, 2016, 454, 59-69.	3.1	3
359	Conventional and Spark Plasma Sintered Ba0.8Pb0.2TiO3 Nano Ceramics: Structural, Dielectric, and Ferroelectric Properties. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 2579-2586.	2.2	3
360	Preparation and characterisation of fine-grained barium lead titanate ceramics by spark plasma sintering technique. Materials Research Innovations, 2016, 20, 81-85.	2.3	3

#	Article	IF	CITATIONS
361	On the Structural Stability of Melt Spun Ribbons of Fe95â^'x Zr x B4Cu1 (x = 7 and 9) Alloys and Correlation with Their Magnetic Properties. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 560-571.	2.2	3
362	Microstructure evolution and densification during spark plasma sintering of nanocrystalline W-5wt.%Ta alloy. Philosophical Magazine Letters, 2020, 100, 442-451.	1.2	3
363	Stress corrosion cracking behaviour of 8090 Al–Li alloy in a chloride containing medium. Corrosion Engineering Science and Technology, 2005, 40, 313-320.	1.4	2
364	Microstructure engineering of materials. International Journal of Advances in Engineering Sciences and Applied Mathematics, 2010, 2, 125-125.	1.1	2
365	Prediction of carbon segregation on the surface of continuously annealed hot-rolled LCAK steel. Surface and Coatings Technology, 2010, 205, 2051-2054.	4.8	2
366	Synthesis and Characterization of CNT Reinforced AA4032 Nanocomposites by High Energy Ball Milling. , 2010, , .		2
367	Nanocomposites of Aluminum Alloys by Rapid Solidification Processing. Transactions of the Indian Institute of Metals, 2012, 65, 647-651.	1.5	2
368	Mechanical properties of Ni0.83Co0.15Cu0.02Fe1.9O4â^´Î´+PbZr0.52Ti0.48O3 particulate composites by composite oscillator technique and the correlation with the results of magnetoelectric properties. Journal of Advanced Ceramics, 2012, 1, 317-326.	17.4	2
369	Generation of drugs coated iron nanoparticles through high energy ball milling. Journal of Applied Physics, 2014, 115, 124906.	2.5	2
370	Investigation on PZT-Based Nanostructured Functional Materials. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2014, 44, 991-994.	0.6	2
371	Structure–Property Correlation in Fe-Al2O3 In Situ Nanocomposite Synthesized by High-Energy Ball Milling and Spark Plasma Sintering. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 5223-5233.	2.2	2
372	Role of polyhedral order in glass to crystal transition dynamics in Zr60Cu10Al15Ni15 glass forming alloy. Journal of Non-Crystalline Solids, 2017, 471, 256-263.	3.1	2
373	Physical metallurgy of high-entropy alloys. , 2019, , 31-50.		2
374	Alloy design and phase selection rules in high-entropy alloys. , 2019, , 51-79.		2
375	Synthesis and processing. , 2019, , 103-117.		2
376	Kinetics and phase formation during crystallization of Hf64Cu18Ni18 amorphous alloy. Phase Transitions, 2021, 94, 110-121.	1.3	2
377	Future Work and Possible Applications of Nanocrystalline Al Alloys as Produced by High-Energy Ball Milling. SpringerBriefs in Materials, 2017, , 95-99.	0.3	2
378	Finite Element Model in Nanoindentation to Study Nonlinear Behavior of Nanoceramic PGZT. Materials and Manufacturing Processes, 2007, 22, 337-340.	4.7	1

#	Article	IF	CITATIONS
379	Determination of kinetic parameters for devitrification of metallic glass — A theoretical approach. Transactions of the Indian Institute of Metals, 2008, 61, 319-324.	1.5	1
380	Compression creep studies of mechanically alloyed nanostructured Fe-12Cr-2W-0.25Y2O3ODS alloy. Journal of Physics: Conference Series, 2010, 240, 012090.	0.4	1
381	Spark Plasma Sintering of Fe-Cr-Mo-P-B-C-Si Amorphous Alloy. Materials Science Forum, 2012, 710, 320-325.	0.3	1
382	Microwave Sintering Studies on Low Loss (Zn, Mg)TiO3Dielectric Resonator Materials. Journal of Microwave Power and Electromagnetic Energy, 2013, 47, 262-269.	0.8	1
383	Isothermal Grain Growth Studies on Nanostructured 9Cr-1Mo and 9Cr-1W Ferritic Steels Containing Nano-sized Oxide Dispersoids. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 1684-1688.	2.2	1
384	Control of UFG Microstructure in Welded Carbon Steel Tubes by Cold Drawing and Annealing. Transactions of the Indian Institute of Metals, 2014, 67, 681-690.	1.5	1
385	Icosahedral Cluster Energetics in Zr60Cu10Al15Ni15 Bulk Metallic Glass and Their Role on Solidification Behavior. Transactions of the Indian Institute of Metals, 2015, 68, 1107-1112.	1.5	1
386	Alloy design in the 21st century: ICME, materials genome, and artificial intelligence strategies. , 2019, , 81-101.		1
387	Solid solution phases and their microstructures in HEAs. , 2019, , 119-144.		1
388	Structural properties. , 2019, , 195-232.		1
389	Phase Stability of Rapidly Solidified (Fe1â^'xNix)88Zr7B4Cu1 Ribbons. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2021, 52, 560-573.	2.2	1
390	Mechanical Properties of High-Energy Ball Milled Nanocrystalline Al Alloys. SpringerBriefs in Materials, 2017, , 45-59.	0.3	1
391	Thermal Stability of High-Energy Ball Milled Al Alloys. SpringerBriefs in Materials, 2017, , 61-69.	0.3	1
392	Glass Forming Ability, Structure and Soft Magnetic Properties of Rapidly Solidified Fe86Zr7â^'xNbxB6Cu1 Alloy Ribbons. Transactions of the Indian Institute of Metals, 2015, 68, 1047-1051.	1.5	0
393	Factors Influencing Oxidation Behavior of Metallic Glasses. Transactions of the Indian Institute of Metals, 2015, 68, 1151-1154.	1.5	0
394	Processing of [(Fe0.5Co0.5)0.75B0.2Si0.05]96Nb4 Bulk Metallic Glass Alloy by Cu Mould Casting and Spark Plasma Sintering. Transactions of the Indian Institute of Metals, 2018, 71, 309-317.	1.5	0
395	Preface on International Conference on Solidification Science and Processing. Transactions of the Indian Institute of Metals, 2018, 71, 2615-2615.	1.5	0
396	Functional properties. , 2019, , 233-246.		0

#	Article	IF	CITATIONS
397	Evolution of ZnO flowerets from dealloying of Cu-Zn alloy powder. Advanced Powder Technology, 2020, 31, 3093-3101.	4.1	0
398	Consolidation of High-Energy Ball Milled Nanocrystalline Al Powders. SpringerBriefs in Materials, 2017, , 29-43.	0.3	0
399	Low temperature synthesis of multicomponent perovskite by mechanochemical route. Ceramics International, 2021, 48, 6385-6385.	4.8	0