Zbigniew Krejpcio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4502086/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Potential of L-Arginine in Prevention and Treatment of Disturbed Carbohydrate and Lipid Metabolism—A Review. Nutrients, 2022, 14, 961.	1.7	28
2	Modulating effects of steviol and steviol glycosides on adipogenesis, lipogenesis, glucose uptake and insulin resistance in 3T3-L1 adipocyte model. Journal of Functional Foods, 2022, 94, 105141.	1.6	5
3	Effects of Bitter Melon and a Chromium Propionate Complex on Symptoms of Insulin Resistance and Type 2 Diabetes in Rat Models. Biological Trace Element Research, 2021, 199, 1013-1026.	1.9	9
4	Comparison of the In Vitro Bioavailability of Selected Minerals from Gluten-Free Breads Enriched with Grains and Synthetic Organic and Non-Organic Compounds. Molecules, 2021, 26, 2085.	1.7	1
5	Sambucus Nigra Extracts–Natural Antioxidants and Antimicrobial Compounds. Molecules, 2021, 26, 2910.	1.7	38
6	Steviol Glycosides Supplementation Affects Lipid Metabolism in High-Fat Fed STZ-Induced Diabetic Rats. Nutrients, 2021, 13, 112.	1.7	16
7	Chromium(III) Glycinate Complex Supplementation Improves the Blood Glucose Level and Attenuates the Tissular Copper to Zinc Ratio in Rats with Mild Hyperglycaemia. Biological Trace Element Research, 2020, 193, 185-194.	1.9	13
8	A Comparative Study of the Bioavailability of Fe, Cu and Zn from Gluten-Free Breads Enriched with Natural and Synthetic Additives. Foods, 2020, 9, 1853.	1.9	3
9	Effects of steviol on cytotoxicity, adipogenesis, ROS concentration and gene expression in 3T3-L1 Cell Line. Proceedings of the Nutrition Society, 2020, 79, .	0.4	0
10	The Relationship between Dietary, Serum and Hair Levels of Minerals (Fe, Zn, Cu) and Glucose Metabolism Indices in Obese Type 2 Diabetic Patients. Biological Trace Element Research, 2019, 189, 34-44.	1.9	20
11	The functional and health-promoting properties of Stevia rebaudiana Bertoni and its glycosides with special focus on the antidiabetic potential – A review. Journal of Functional Foods, 2019, 61, 103465.	1.6	38
12	Effects of chromium(III) supplementation on rodent models of insulin resistance and diabetes. , 2019, , 195-218.		0
13	Combined effect of diversified Fe(III) content in the diet and Cr(III) supplementation on the magnesium status in rats. Journal of Elementology, 2018, , .	0.0	1
14	The Effects of Supplementary Cr3 (Chromium(III) Propionate Complex) on the Mineral Status in Healthy Female Rats. Biological Trace Element Research, 2017, 180, 90-99.	1.9	16
15	Effect of Elderberry (Sambucus nigra L.) Extract Supplementation in STZ-Induced Diabetic Rats Fed with a High-Fat Diet. International Journal of Molecular Sciences, 2017, 18, 13.	1.8	34
16	The effect of different forms of food deprivation on calcium andÂmagnesium concentrations in the serum, brain and femoral bone of female Wistar rats. Journal of Elementology, 2017, , .	0.0	0
17	The Effects of Supplementary Mulberry Leaf (Morus alba) Extracts on the Trace Element Status (Fe, Zn) Tj ETQq1 Element Research, 2016, 174, 158-165.	1 0.7843 1.9	14 rgBT /Ove 38
18	The Effects of High Dietary Doses of Chromium(III) Complex with Propionic Acid on Nutritional and Selected Blood Indices in Healthy Female Rats. Biological Trace Element Research, 2016, 171, 192-200.	1.9	13

ZBIGNIEW KREJPCIO

#	Article	IF	CITATIONS
19	An Assessment of the Consumption of Energy and Selected Minerals and Their Content in the Hair of Children Aged 1–4ÂYears. Biological Trace Element Research, 2016, 170, 255-263.	1.9	1
20	Stevia rebaudiana Bertoni: health promoting properties and therapeutic applications. Journal Fur Verbraucherschutz Und Lebensmittelsicherheit, 2016, 11, 3-8.	0.5	25
21	Iron bioavailability from cereal products enriched with Pleurotus ostreatus mushrooms in rats with induced anaemia. Annals of Agricultural and Environmental Medicine, 2016, 23, 310-314.	0.5	12
22	Assessment of the nutritional value daily food rations of children aged 1-4 years. Roczniki Panstwowego Zakladu Higieny, 2016, 67, 169-77.	0.5	3
23	Essential metals profile of the hair and nails of patients with laryngeal cancer. Journal of Trace Elements in Medicine and Biology, 2015, 31, 67-73.	1.5	34
24	Evaluation of mineral status in hypertensive patients undergoing pharmacotherapy. Roczniki Panstwowego Zakladu Higieny, 2015, 66, 61-7.	0.5	3
25	Stevia rebaudiana Bertoni - chemical composition and functional properties [pdf]. Acta Scientiarum Polonorum, Technologia Alimentaria, 2015, 14, 145-152.	0.2	14
26	The Effects of l-Arginine, Alone and Combined with Vitamin C, on Mineral Status in Relation to its Antidiabetic, Anti-Inflammatory, and Antioxidant Properties in Male Rats on a High-Fat Diet. Biological Trace Element Research, 2014, 157, 67-74.	1.9	15
27	The Effects of Antihypertensive Drugs on Chromium Status, Glucose Metabolism, and Antioxidant and Inflammatory Indices in Spontaneously Hypertensive Rats. Biological Trace Element Research, 2014, 157, 60-66.	1.9	8
28	Supplementary Chromium(III) Propionate Complex Does Not Protect Against Insulin Resistance in High-Fat-Fed Rats. Biological Trace Element Research, 2014, 157, 147-155.	1.9	12
29	Mulberry leaf extract intake reduces hyperglycaemia in streptozotocin (STZ)-induced diabetic rats fed high-fat diet. Journal of Functional Foods, 2014, 8, 9-17.	1.6	98
30	Quantification of Total and Hexavalent Chromium in Lager Beers: Variability between Styles and Estimation of Daily Intake of Chromium from Beer. Journal of Agricultural and Food Chemistry, 2014, 62, 9195-9200.	2.4	14
31	Evaluation of the content and bioaccessibility of iron, zinc, calcium and magnesium from groats, rice, leguminous grains and nuts. Journal of Food Science and Technology, 2014, 51, 589-594.	1.4	64
32	Evaluation of nutritional and biochemical parameters in spontaneously hypertensive rats following antihypertensive treatment. Acta Scientiarum Polonorum, Technologia Alimentaria, 2014, 13, 103-110.	0.2	8
33	Comparison of Tissue Metal Concentrations in Zucker Lean, Zucker Obese, and Zucker Diabetic Fatty Rats and the Effects of Chromium Supplementation on Tissue Metal Concentrations. Biological Trace Element Research, 2013, 151, 373-383.	1.9	26
34	Evaluation of the content and the potential bioavailability of minerals from gluten-free products. Acta Scientiarum Polonorum, Technologia Alimentaria, 2013, 12, 75-9.	0.2	15
35	Effects of Combined Dietary Chromium(III) Propionate Complex and Thiamine Supplementation on Insulin Sensitivity, Blood Biochemical Indices, and Mineral Levels in High-Fructose-Fed Rats. Biological Trace Element Research, 2012, 150, 350-359.	1.9	20
36	Effect of Mycophenolate Mofetil on Plasma Bioelements in Renal Transplant Recipients. Biological Trace Element Research, 2012, 145, 136-143.	1.9	9

ZBIGNIEW KREJPCIO

#	Article	IF	CITATIONS
37	Dietary chromium(III) propionate complex supplementation affects tissue mineral levels in rats fed high-fructose diet. Journal of Elementology, 2012, , .	0.0	2
38	Evaluation of anti-diabetic potential of chromium(III) propionate complex in high-fat diet fed and STZ injected rats. Food and Chemical Toxicology, 2011, 49, 3217-3223.	1.8	53
39	Dietary Intake and Serum and Hair Concentrations of Minerals and their Relationship with Serum Lipids and Glucose Levels in Hypertensive and Obese Patients with Insulin Resistance. Biological Trace Element Research, 2011, 139, 137-150.	1.9	69
40	The Effects of Chromium Complex and Level on Glucose Metabolism and Memory Acquisition in Rats Fed High-Fat Diet. Biological Trace Element Research, 2011, 143, 1018-1030.	1.9	31
41	Effects of Chromium Brewer's Yeast Supplementation on Body Mass, Blood Carbohydrates, and Lipids and Minerals in Type 2 Diabetic Patients. Biological Trace Element Research, 2011, 143, 726-737.	1.9	47
42	Evaluation of the Acute Oral Toxicity Class of Trinuclear Chromium(III) Glycinate Complex in Rat. Biological Trace Element Research, 2011, 143, 1564-1575.	1.9	13
43	Folic Acid and Protein Content in Maternal Diet and Postnatal High-Fat Feeding Affect the Tissue Levels of Iron, Zinc, and Copper in the Rat. Biological Trace Element Research, 2011, 144, 885-893.	1.9	9
44	Bioavailability of Iron from Cereal Products Enriched with Dried Shittake Mushrooms (<i>Lentinula) Tj ETQq0 0 C Food, 2010, 13, 1189-1194.</i>	rgBT /Ov 0.8	erlock 10 Tf 50 14
45	Genotoxicity assessment of chromium(III) propionate complex in the rat model using the comet assay. Food and Chemical Toxicology, 2010, 48, 89-92.	1.8	49
46	Evaluation of the acute oral toxicity class of tricentric chromium(III) propionate complex in rat. Food and Chemical Toxicology, 2010, 48, 859-864.	1.8	38
47	Chromium(III) propionate complex supplementation improves carbohydrate metabolism in insulin-resistance rat model. Food and Chemical Toxicology, 2010, 48, 2791-2796.	1.8	54
48	Evaluation of insulin binding and signaling activity of newly synthesized chromium(III) complexes in vitro. Molecular Medicine Reports, 2010, 3, 347-53.	1.1	21
49	Fetal iron status regulates maternal iron metabolism during pregnancy in the rat. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 296, R1063-R1070.	0.9	79
50	The effects of tricentric chromium(III) propionate complex supplementation on pregnancy outcome and maternal and foetal mineral status in rat. Food and Chemical Toxicology, 2009, 47, 2673-2678.	1.8	25
51	Chromium(III) Propionate and Dietary Fructans Supplementation Stimulate Erythrocyte Glucose Uptake and Beta-Oxidation in Lymphocytes of Rats. Biological Trace Element Research, 2006, 114, 237-248.	1.9	30
52	Effect of timing of iron supplementation on maternal and neonatal growth and iron status of iron-deficient pregnant rats. Journal of Physiology, 2004, 561, 195-203.	1.3	41