
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4501548/publications.pdf Version: 2024-02-01

Ελκιμλ Ηελκλι

#	Article	IF	CITATIONS
1	Potential Application of Carbonâ€based Electrical Sensor for the Highly Sensitive Diltiazem HCl Quantification in its Pharmaceutical Products and Biological Samples. Electroanalysis, 2023, 35, .	1.5	4
2	The potential of tantalum as an efficient electrocatalyst for green hydrogen production. Electrochimica Acta, 2022, 404, 139783.	2.6	6
3	Hydrothermal Microwave-Assisted Fabrication of Nanohydroxyapatite Powder and Optimization of Its Nanocomposite Coatings on Magnesium Alloy for Orthopedic Applications. ACS Omega, 2022, 7, 1021-1034.	1.6	4
4	Influence of anodization and bovine serum albumin on the degradation of new AXJ-magnesium alloy system as a bioabsorbable orthopedic implant. Journal of Electroanalytical Chemistry, 2022, 918, 116458.	1.9	5
5	Mesoporous Ni-Zn-Fe layered double hydroxide as an efficient binder-free electrode activeÂmaterial for high-performance supercapacitors. Journal of Power Sources, 2020, 466, 228294.	4.0	96
6	Insight into the Electrochemical and Semiconducting Properties of Native Oxide Films on Ti Metal and Its Ti–6Al–4V Alloy in Borate Buffer Solutions. Protection of Metals and Physical Chemistry of Surfaces, 2020, 56, 333-342.	0.3	6
7	Synthesis of worm-like binary metallic active material by electroless deposition approach for high-performance supercapacitor. Journal of Energy Storage, 2020, 31, 101625.	3.9	18
8	An efficient graphene/graphite paste sensor chemically modified by diphenylcarbazone for the detection of Al(III) ions in real water samples. Microchemical Journal, 2020, 155, 104691.	2.3	7
9	Newly selective electrochemical sensors for trace-level determination of Al(III) ions in drainage water, spiked tap water and pharmaceutical preparation samples. Journal of the Iranian Chemical Society, 2019, 16, 2795-2807.	1.2	6
10	Mesoporous ZnMoS ₄ as a supercapacitor electrode material with battery-like behavior. New Journal of Chemistry, 2019, 43, 1987-1992.	1.4	35
11	Electrochemical Characterization of Certain Mg-Based Alloys in Artificial Perspiration Biofluid for Consumer and Industrial Applications. Journal of Materials Engineering and Performance, 2019, 28, 4379-4392.	1.2	7
12	Role of amoxicillin in enhancing AZ31 alloy degradation resistance and its monitoring using nano-Pd electrochemical sensor. Materials Chemistry and Physics, 2019, 234, 224-236.	2.0	9
13	Improving the electrocatalytic performance of Pd nanoparticles supported on indium/tin oxide substrates towards glucose oxidation. Applied Catalysis A: General, 2019, 580, 28-33.	2.2	23
14	AEO7 Surfactant as an Eco-Friendly Corrosion Inhibitor for Carbon Steel in HCl solution. Scientific Reports, 2019, 9, 2319.	1.6	91
15	A facile electrosynthesis approach of amorphous Mn-Co-Fe ternary hydroxides as binder-free active electrode materials for high-performance supercapacitors. Electrochimica Acta, 2019, 296, 59-68.	2.6	128
16	Impact of pH and temperature on the electrochemical and semiconducting properties of zinc in alkaline buffer media. RSC Advances, 2018, 8, 3816-3827.	1.7	21
17	Monte Carlo simulation for guar and xanthan gums as green scale inhibitors. Journal of Petroleum Science and Engineering, 2018, 166, 263-273.	2.1	37
18	Characterization of newly synthesized pyrimidine derivatives for corrosion inhibition as inferred from computational chemical analysis. Journal of Molecular Structure, 2018, 1152, 328-336.	1.8	34

ΓΑΚΙΗΑ ΗΕΑΚΑL

#	Article	IF	CITATIONS
19	Performance of Centaurea cyanus aqueous extract towards corrosion mitigation of carbon steel in saline formation water. Desalination, 2018, 425, 111-122.	4.0	73
20	Electrochemical measurements and semi-empirical calculations for understanding adsorption of novel cationic Gemini surfactant on carbon steel in H 2 SO 4 solution. Journal of Molecular Structure, 2018, 1156, 473-482.	1.8	25
21	Characterization of electrodeposited undoped and doped thin ZnO passive films on zinc metal in alkaline HCO ₃ ^{â^'} /CO ₃ ^{2â^'} buffer solution. RSC Advances, 2018, 8, 39321-39333.	1.7	4
22	Corrosion Degradation of AXJ530 Magnesium Alloy in Simulated Pysiological Fluid and Its Mitigation by Fluoride and Chitosan Coatings for Osteosynthetic Applications. International Journal of Electrochemical Science, 2018, 13, 7724-7747.	0.5	16
23	Serum albumin can influence magnesium alloy degradation in simulated blood plasma for cardiovascular stenting. Materials Chemistry and Physics, 2018, 220, 35-49.	2.0	30
24	Gemini surfactants as corrosion inhibitors for carbon steel. Journal of Molecular Liquids, 2017, 230, 395-407.	2.3	143
25	Optimizing parameters affecting electroless Ni-P coatings on AZ91D magnesium alloy as corrosion protection barriers. Protection of Metals and Physical Chemistry of Surfaces, 2017, 53, 177-187.	0.3	8
26	Electrochemical and Quantum Chemical Studies on the Corrosion Inhibition Potential of Camellia sinensis Leaves Extract for Carbon Steel in Produced Water. Zeitschrift Fur Physikalische Chemie, 2017, 232, 13-35.	1.4	19
27	Relevant aspects in the stability performance of different anodic alumina (AAO) films in aqueous sulfate solutions. Journal of Electroanalytical Chemistry, 2017, 792, 95-103.	1.9	8
28	Synthesis and assessment of new cationic gemini surfactants as inhibitors for carbon steel corrosion in oilfield water. RSC Advances, 2017, 7, 47335-47352.	1.7	65
29	Green approach towards corrosion inhibition of carbon steel in produced oilfield water using lemongrass extract. RSC Advances, 2017, 7, 45241-45251.	1.7	69
30	Nanostructured spinel manganese cobalt ferrite for high-performance supercapacitors. RSC Advances, 2017, 7, 51888-51895.	1.7	98
31	Synthesis, characterization and computational chemical study of novel pyrazole derivatives as anticorrosion and antiscalant agents. Journal of Molecular Structure, 2017, 1147, 714-724.	1.8	36
32	Electrochemical Characterization of Nickel in Oxalic Acid Solutions and the Effect of Halides and Azide Ions Additions on Its Behavior. International Journal of Electrochemical Science, 2017, , 9378-9397.	0.5	5
33	Role of Some Plating Parameters in the Properties of Ni-P/Al2O3 Nanocomposite Coatings on Mg alloy. International Journal of Electrochemical Science, 2016, 11, 7198-7215.	0.5	12
34	RP-HPLC Stability-indicating Method for Estimation of Irbesartan and Hydrochlorothiazide in Bulk and Pharmaceutical Dosage Form. Chinese Journal of Analytical Chemistry, 2016, 44, e1601-e1608.	0.9	7
35	Effect of various de-anodizing techniques on the surface stability of non-colored and colored nance nancoporous AAO films in acidic solution. Applied Surface Science, 2015, 359, 939-947.	3.1	14
36	Degradation behaviour of AZ80E magnesium alloy exposed to phosphate buffer saline medium. Corrosion Science, 2014, 86, 285-294.	3.0	32

#	Article	IF	CITATIONS
37	Influence of cerium (III) ions on corrosion and hydrogen evolution of carbon steel in acid solutions. International Journal of Hydrogen Energy, 2012, 37, 19219-19230.	3.8	23
38	Enhanced corrosion resistance of magnesium alloy AM60 by cerium(III) in chloride solution. Corrosion Science, 2012, 56, 86-95.	3.0	61
39	Impact of chloride and fluoride additions on surface reactivity and passivity of AM60 magnesium alloy in buffer solution. Corrosion Science, 2012, 64, 153-163.	3.0	28
40	Investigation on the corrosion and hydrogen evolution for AZ91D magnesium alloy in single and anion-containing oxalate solutions. International Journal of Hydrogen Energy, 2012, 37, 84-94.	3.8	32
41	Electrochemical behaviour of the Mg alloy AZ91D in borate solutions. Corrosion Science, 2011, 53, 1174-1185.	3.0	56
42	Electrochemical behaviour of Ti–6Al–4V alloy and Ti in azide and halide solutions. Corrosion Science, 2011, 53, 2728-2737.	3.0	76
43	Effects of Nb and Cr on the Corrosion Characterization of Al-Containing Transformation-Induced Plasticity Steels in Neutral Chloride Solutions. Corrosion, 2011, 67, 095006-095006-9.	0.5	1
44	Inhibitive effect of some thiadiazole derivatives on C-steel corrosion in neutral sodium chloride solution. Materials Chemistry and Physics, 2011, 125, 26-36.	2.0	52
45	Influence of chloride ion concentration on the corrosion behavior of Al-bearing TRIP steels. Materials Chemistry and Physics, 2011, 130, 743-749.	2.0	31
46	Electrochemical performance of Mg–9Al–1Zn alloy in aqueous medium. Journal of Solid State Electrochemistry, 2011, 15, 125-138.	1.2	23
47	Electrochemical properties of the anodic films formed on titanium and its Tiâ€6Alâ€4V alloy in HBr solution. Surface and Interface Analysis, 2010, 42, 1695-1701.	0.8	7
48	Cyclic Voltammetric Studies on Selected Tin-Silver Binary Alloys in Sodium Hydroxide Solution. Corrosion, 2010, 66, 115001-115001-12.	0.5	1
49	Electrochemical behavior of 304L stainless steel in high saline and sulphate solutions containing alga Dunaliella Salina and β-carotene. Journal of Alloys and Compounds, 2010, 491, 636-642.	2.8	18
50	Role of some thiadiazole derivatives as inhibitors for the corrosion of C-steel in 1 M H2SO4. Journal of Applied Electrochemistry, 2009, 39, 391-402.	1.5	73
51	Electrochemical behavior of AZ91D magnesium alloy in phosphate medium—part I. Effect of pH. Journal of Applied Electrochemistry, 2009, 39, 583-591.	1.5	51
52	Electrochemical behavior of AZ91D magnesium alloy in phosphate medium: Part II. Induced passivation. Journal of Applied Electrochemistry, 2009, 39, 1633-1642.	1.5	39
53	Influence of halides on the dissolution and passivation behavior of AZ91D magnesium alloy in aqueous solutions. Electrochimica Acta, 2009, 54, 1545-1557.	2.6	106
54	Corrosion characterization of new tin–silver binary alloys in nitric acid solutions. Corrosion Science, 2008, 50, 1618-1626.	3.0	62

#	Article	IF	CITATIONS
55	Experimental and Theoretical Study of Uracil and Adenine Inhibitors in Sn-Ag Alloy/Nitric Acid Corroding System. Journal of the Electrochemical Society, 2008, 155, C534.	1.3	42
56	Stability of spontaneous passive films on high strength Mo-containing stainless steels in aqueous solutions. Journal of Applied Electrochemistry, 2007, 37, 405-413.	1.5	44
57	Electrochemical Behavior of Sn-Ag Alloys in Sodium Fluoride Solutions. Materialwissenschaft Und Werkstofftechnik, 2006, 37, 589-596.	0.5	8
58	Electrochemical behaviour of Mo-containing austenitic stainless steels in buffer solution. Materialwissenschaft Und Werkstofftechnik, 2004, 35, 407-412.	0.5	11
59	Electrochemical behaviour of passive films on molybdenum-containing austenitic stainless steels in aqueous solutions. Electrochimica Acta, 2004, 50, 43-49.	2.6	116
60	Formation and dissolution behaviour of ZrO2 film in H3PO4 acid solutions. Thin Solid Films, 1992, 219, 146-152.	0.8	12
61	Effect of Fluoride Media on the Stability of Anodic ZrO2Films. Corrosion, 1990, 46, 247-253.	0.5	13
62	Effect of pH on the formation-dissolution processes of anodic films on bismuth. Journal of Materials Science, 1990, 25, 1289-1293.	1.7	2
63	A study of the impedance characteristics of thin oxide films on bismuth. Thin Solid Films, 1990, 187, 221-230.	0.8	0
64	Some formation factors affecting the dissolution behaviour of anodic oxide films on aluminum in H3PO4. Thin Solid Films, 1990, 192, 193-199.	0.8	7
65	Dissolution of Oxalic Acid on Passive Bismuth. Corrosion, 1990, 46, 243-247.	0.5	0
66	Formation and dissolution of anodic oxide films on zirconium in NaOH: Kinetic studies. Journal of Applied Electrochemistry, 1989, 19, 213-218.	1.5	14
67	Valve metal behaviour of bismuth in NaOH. Journal of Applied Electrochemistry, 1988, 18, 555-560.	1.5	7
68	Anodic Behavior of Titanium in Aqueous Media. Corrosion, 1988, 44, 705-710.	0.5	16
69	Discussion on the Behavior of a Porous Anodic Film on Aluminum in H ₃ PO ₄ Studied by Electrochemical Techniques. Corrosion, 1988, 44, 354-359.	0.5	8
70	Kinetic studies of dissolution behaviour of bismuth and anodic oxide films in sulphuric acid. Corrosion Engineering Science and Technology, 1988, 23, 41-46.	0.3	8
71	Kinetic studies on the dissolution of the anodic oxide film on titanium in phosphoric acid solutions. Corrosion Science, 1987, 27, 453-462.	3.0	19
72	Catalytic reduction of In(III) at the dropping mercury electrode in 1 M NaN3 medium and the activation energies of its electrochemical processes. Surface and Coatings Technology, 1987, 31, 63-75.	2.2	0

#	Article	IF	CITATIONS
73	Retardation of the Cd ²⁺ and In ³⁺ Reduction Processes at DME in Chloride Medium in Relation to Adsorption of Coumarin. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1986, 90, 1205-1209.	0.9	0
74	Kinetic studies of the dissolution behaviour of anodic oxide films on Zr in H2SO4. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1983, 147, 181-191.	0.3	39
75	Adsorption of adenosine molecules at the mercury-electrolyte interface as inferred from electrocapillary measurements in aqueous electrolytes. Surface Technology, 1983, 18, 293-302.	0.4	3
76	Differential capacitance of mercury in the absence and the presence of adenosine in aqueous electrolytes. Surface Technology, 1983, 18, 303-312.	0.4	3
77	Electrochemical Behaviour of Anodically formed Oxide Layers on Ti in HClO ₄ . Corrosion Engineering Science and Technology, 1983, 18, 156-159.	0.3	5
78	Adsorption behaviour and orientation of adenosine molecules at the mercury drop electrode: Congruence of isotherms with respect to the electrode potential and surface charge density in neutral electrolytes. Surface Technology, 1982, 17, 229-237.	0.4	2
79	Medium effects on the electroreduction of In(III) at DME. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1980, 115, 247-251.	0.3	2
80	Impedance studies of the inhibitive effect of benzotriazole on the corrosion of copper in sodium chloride medium. Corrosion Science, 1980, 20, 887-898.	3.0	159
81	Adsorption and orientation of coumarin molecules on mercury—II. Electrochimica Acta, 1975, 20, 489-497.	2.6	12
82	Electrochemistry of the azide ion—III. Reactivity of the azide ion compared with that of chloride and bromide ions towards electron transfer at electrodes. Electrochimica Acta, 1970, 15, 1391-1397.	2.6	9