Markus F Meyer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4501522/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bachmann bundle potential during atrial lead placement: A case series. Heart Rhythm, 2022, 19, 490-494.	0.7	7

 $_{2}$ Beta-Blocker Use in Hypertension and Heart Failure (A Secondary Analysis of the Systolic Blood) Tj ETQq0 0 0 rgBT $_{1.6}^{10}$ Verlock $_{5}^{10}$ Tf 50 70

			/
3	Personalized pacing for diastolic dysfunction and heart failure with preserved ejection fraction: Design and rationale for the myPACE randomized controlled trial. Heart Rhythm O2, 2022, 3, 109-116.	1.7	8
4	Clinical impact of Bachmann's bundle pacing defined by electrocardiographic criteria on atrial arrhythmia outcomes. Europace, 2022, 24, 1460-1468.	1.7	7
5	Association Between Î ² -Blockers and Outcomes in Heart Failure With Preserved Ejection Fraction: Current Insights From the SwedeHF Registry. Journal of Cardiac Failure, 2021, 27, 1165-1174.	1.7	17
6	SERCA2a-phospholamban interaction monitored by an interposed circularly permutated green fluorescent protein. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 320, H2188-H2200.	3.2	2
7	A Targeted Treatment Opportunity for HFpEF: Taking Advantage of Diastolic Tone. Circulation, 2021, 144, 1269-1271.	1.6	8
8	Beta-Blocker Cessation in Stable Outpatients With Heart Failure With a Preserved Ejection Fraction. Journal of Cardiac Failure, 2020, 26, 281-282.	1.7	20
9	Heart Rate–Induced Myocardial Ca ²⁺ Retention and Left Ventricular Volume Loss in Patients With Heart Failure With Preserved Ejection Fraction. Journal of the American Heart Association, 2020, 9, e017215.	3.7	23
10	Enhancing diastolic function by strain-dependent detachment of cardiac myosin crossbridges. Journal of General Physiology, 2020, 152, .	1.9	7
11	An approach towards individualized lower rate settings for pacemakers. Heart Rhythm O2, 2020, 1, 390-393.	1.7	6
12	Safety and Feasibility of a Nocturnal Heart Rate Elevation—Exploration of a Novel Treatment Concept. Journal of Cardiac Failure, 2019, 25, 67-71.	1.7	9
13	Heart Rate and Heart Failure With Preserved Ejection Fraction. Circulation: Heart Failure, 2019, 12, e006213.	3.9	59
14	Effects of a Higher Heart Rate on Quality of Life and Functional Capacity in Patients With Left Ventricular Diastolic Dysfunction. American Journal of Cardiology, 2019, 124, 1069-1075.	1.6	10
15	Association of Î ² -Blocker Use With Heart Failure Hospitalizations and Cardiovascular Disease Mortality Among Patients With Heart Failure With a Preserved Ejection Fraction. JAMA Network Open, 2019, 2, e1916598.	5.9	94
16	Left ventricular endâ€diastolic volume predicts exercise capacity in patients with a normal ejection fraction. Clinical Cardiology, 2018, 41, 628-633.	1.8	10
17	β-Blockers in myocardial infarction and coronary artery disease with a preserved ejection fraction. Coronary Artery Disease, 2018, 29, 262-270.	0.7	12

MARKUS F MEYER

#	Article	IF	CITATIONS
19	Relaxation and the Role of Calcium in Isolated Contracting Myocardium From Patients With Hypertensive Heart Disease and Heart Failure With Preserved Ejection Fraction. Circulation: Heart Failure, 2017, 10, .	3.9	81
20	Abundance, localization, and functional correlates of the advanced glycation end-product carboxymethyl lysine in human myocardium. Physiological Reports, 2017, 5, e13462.	1.7	8
21	Heart rate-induced modifications of concentric left ventricular hypertrophy: exploration of a novel therapeutic concept. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 311, H1031-H1039.	3.2	18
22	Relationship of Exercise Capacity and Left Ventricular Dimensions in Patients with a Normal Ejection Fraction. An Exploratory Study. PLoS ONE, 2015, 10, e0119432.	2.5	20
23	Myocardial Stiffness in Patients With Heart Failure and a Preserved Ejection Fraction. Circulation, 2015, 131, 1247-1259.	1.6	509
24	Esophageal assessments of left ventricular filling pressures: A proof-of-concept study. International Journal of Critical Illness and Injury Science, 2014, 4, 18.	0.6	0
25	Left Ventricular Atrophy in Pulmonary Arterial Hypertension. Journal of the American College of Cardiology, 2014, 64, 38-40.	2.8	10
26	High dose intracoronary N-acetylcysteine in a porcine model of ST-elevation myocardial infarction. Journal of Thrombosis and Thrombolysis, 2013, 36, 433-441.	2.1	9
27	Mechanisms of Diastolic Dysfunction in Heart Failure With a Preserved Ejection Fraction. Circulation: Heart Failure, 2013, 6, 1112-1115.	3.9	45
28	Myosin Cross-Bridge Dynamics in Patients With Hypertension and Concentric Left Ventricular Remodeling. Circulation: Heart Failure, 2012, 5, 803-811.	3.9	36
29	Erythropoietin induces positive inotropic and lusitropic effects in murine and human myocardium. Journal of Molecular and Cellular Cardiology, 2012, 52, 256-263.	1.9	10
30	Tachycardia-Induced Diastolic Dysfunction and Resting Tone in Myocardium From Patients With a Normal Ejection Fraction. Journal of the American College of Cardiology, 2011, 58, 147-154.	2.8	109
31	Severe Dilated Cardiomyopathy After Propranolol Treatment in an Undiagnosed Adrenal Pheochromocytoma. Circulation: Heart Failure, 2011, 4, e10-2.	3.9	7
32	N-Acetylcysteine–Enhanced Contrast Provides Cardiorenal Protection. JACC: Cardiovascular Interventions, 2009, 2, 215-221.	2.9	15
33	Coronary Venous Capture of Contrast during Angiography. Journal of Interventional Cardiology, 2006, 19, 401-404.	1.2	5
34	Gene transfer of a phospholamban-targeted antibody improves calcium handling and cardiac function in heart failure. Cardiovascular Research, 2005, 67, 678-688.	3.8	43
35	The Na+/Ca2+ Exchanger/SR Ca2+ ATPase Transport Capacity Regulates the Contractility of Normal and Hypertrophied Feline Ventricular Myocytes. Journal of Cardiac Failure, 2005, 11, 380-387.	1.7	18
36	A recombinant antibody increases cardiac contractility by mimicking phospholamban phosphorylation. FASEB Journal, 2004, 18, 1312-1314.	0.5	36

MARKUS F MEYER

#	Article	IF	CITATIONS
37	Cardiovascular Collapse in a 77-Year-Old-Woman With an Asthma Exacerbation Following Bronchodilator Treatment. Chest, 2003, 124, 1160-1163.	0.8	2
38	Overexpression of the Sarcoplasmic Reticulum Ca2+-ATPase Improves Myocardial Contractility in Diabetic Cardiomyopathy. Diabetes, 2002, 51, 1166-1171.	0.6	229
39	Impaired sarcoplasmic reticulum function leads to contractile dysfunction and cardiac hypertrophy. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 280, H2046-H2052.	3.2	17
40	Phospholamban: a major determinant of the cardiac force-frequency relationship. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 278, H249-H255.	3.2	73
41	Phospholamban-to-SERCA2 ratio controls the force-frequency relationship. American Journal of Physiology - Heart and Circulatory Physiology, 1999, 276, H779-H785.	3.2	49
42	Effects of Mutant and Antisense RNA of Phospholamban on SR Ca ²⁺ -ATPase Activity and Cardiac Myocyte Contractility. Circulation, 1999, 100, 974-980.	1.6	98
43	Altered Cardiac Phenotype in Transgenic Mice Carrying the Â337 Threonine Thyroid Hormone Receptor Â Mutant Derived from the S Family. Endocrinology, 1999, 140, 897-902.	2.8	14
44	Postrest Potentiation of Active Force in Mouse Papillary Muscles Is Greatly Accelerated by Increased Stimulus Frequency. Annals of the New York Academy of Sciences, 1998, 853, 304-307.	3.8	3
45	Sarcoplasmic reticulum Ca2+-ATPase overexpression by adenovirus mediated gene transfer and in transgenic mice. Cardiovascular Research, 1998, 37, 360-366.	3.8	35
46	Adenovirus-Mediated Gene Transfer Reconstitutes Depressed Sarcoplasmic Reticulum Ca ²⁺ -ATPase Levels and Shortens Prolonged Cardiac Myocyte Ca ²⁺ Transients. Circulation, 1997, 96, 400-403.	1.6	105
47	Unaltered ryanodine receptor protein levels in ischemic cardiomvopathy. Molecular and Cellular Biochemistry, 1996, 160-161, 297-302.	3.1	33
48	Unaltered ryanodine receptor protein levels in ischemic cardiomyopathy. , 1996, , 297-302.		0
49	Alterations of Sarcoplasmic Reticulum Proteins in Failing Human Dilated Cardiomyopathy. Circulation, 1995, 92, 778-784.	1.6	427
50	Alterations in Intracellular Calcium Handling Associated With the Inverse Force-Frequency Relation in Human Dilated Cardiomyopathy. Circulation, 1995, 92, 1169-1178.	1.6	316
51	Relationship Between Myocardial Function and Expression of Calcium Cycling Proteins in Nonfailing and Failing Human Myocardium. Developments in Cardiovascular Medicine, 1995, , 103-116.	0.1	1

4