Yasuaki Kumamoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4501392/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nano-Raman Scattering Microscopy: Resolution and Enhancement. Chemical Reviews, 2017, 117, 4983-5001.	23.0	80
2	Plasmon-enhanced UV photocatalysis. Applied Physics Letters, 2014, 104, .	1.5	78
3	Indium for Deep-Ultraviolet Surface-Enhanced Resonance Raman Scattering. ACS Photonics, 2014, 1, 598-603.	3.2	67
4	Label-free Molecular Imaging and Analysis by Raman Spectroscopy. Acta Histochemica Et Cytochemica, 2018, 51, 101-110.	0.8	65
5	Deep ultraviolet resonant Raman imaging of a cell. Journal of Biomedical Optics, 2012, 17, 0760011.	1.4	49
6	Bioconjugation strategy for cell surface labelling with gold nanostructures designed for highly localized pH measurement. Nature Communications, 2018, 9, 5278.	5.8	47
7	Deep UV resonant Raman spectroscopy for photodamage characterization in cells. Biomedical Optics Express, 2011, 2, 927.	1.5	44
8	Deepâ€Ultraviolet Biomolecular Imaging and Analysis. Advanced Optical Materials, 2019, 7, 1801099.	3.6	39
9	Anomalous lattice vibrations of monolayer MoS ₂ probed by ultraviolet Raman scattering. Physical Chemistry Chemical Physics, 2015, 17, 14561-14568.	1.3	36
10	Deep-UV biological imaging by lanthanide ion molecular protection. Biomedical Optics Express, 2016, 7, 158.	1.5	29
11	Deep-ultraviolet Raman scattering studies of monolayer graphene thin films. Carbon, 2015, 81, 807-813.	5.4	28
12	High-Resolution Raman Microscopic Detection of Follicular Thyroid Cancer Cells with Unsupervised Machine Learning. Journal of Physical Chemistry B, 2019, 123, 4358-4372.	1.2	25
13	Rapid and accurate peripheral nerve imaging by multipoint Raman spectroscopy. Scientific Reports, 2017, 7, 845.	1.6	23
14	Label-free detection of myocardial ischaemia in the perfused rat heart by spontaneous Raman spectroscopy. Scientific Reports, 2017, 7, 42401.	1.6	22
15	High-Throughput Cell Imaging and Classification by Narrowband and Low-Spectral-Resolution Raman Microscopy. Journal of Physical Chemistry B, 2019, 123, 2654-2661.	1.2	18
16	Deep-ultraviolet Raman scattering spectroscopy of monolayer WS2. Scientific Reports, 2018, 8, 11398.	1.6	15
17	Fluorescenceâ€based discrimination of breast cancer cells by direct exposure to 5â€aminolevulinic acid. Cancer Medicine, 2019, 8, 5524-5533.	1.3	13
18	Raman micro-spectroscopy as a viable tool to monitor and estimate the ionic transport in epithelial cells. Scientific Reports, 2017, 7, 3395.	1.6	11

ΥΑSUAKI ΚUMAMOTO

#	Article	IF	CITATIONS
19	Deep-UV excitation fluorescence microscopy for detection of lymph node metastasis using deep neural network. Scientific Reports, 2019, 9, 16912.	1.6	11
20	Photoinitiatorâ€Free Twoâ€Photon Polymerization of Biocompatible Materials for 3D Micro/Nanofabrication. Advanced Optical Materials, 2022, 10, .	3.6	7
21	Hot Carrier Generation in Two-Dimensional Silver Nanoparticle Arrays at Different Excitation Wavelengths under On-Resonant Conditions. Journal of Physical Chemistry C, 2020, 124, 13936-13941.	1.5	6
22	Detecting nitrile-containing small molecules by infrared photothermal microscopy. Analyst, The, 2021, 146, 2307-2312.	1.7	6
23	Terbium ion as RNA tag for slide-free pathology with deep-ultraviolet excitation fluorescence. Scientific Reports, 2019, 9, 10745.	1.6	5
24	Raman Spectroscopic Assessment of Myocardial Viability in Langendorff-Perfused Ischemic Rat Hearts. Acta Histochemica Et Cytochemica, 2021, 54, 65-72.	0.8	5
25	Temperature-dependent Photodegradation in UV-resonance Raman Spectroscopy. Analytical Sciences, 2015, 31, 451-454.	0.8	3
26	Deep-Ultraviolet Microscopy and Microspectroscopy. , 2015, , 123-144.		3
27	Rapid and accurate peripheral nerve detection using multipoint Raman imaging (Conference) Tj ETQq1 1 0.7843	14 rgBT /C	Overlock 10 T
28	Multiline illumination Raman microscopy for rapid cell imaging. , 2020, , .		1
29	1P-335 An optical pacemaker for heart muscle cells(The 46th Annual Meeting of the Biophysical Society) Tj ETQq	1 1 0.784	314 rgBT /Ov
30	1P-340 An optical pacemaker for heart muscle cells : the laser irradiation power, phase, frequency dependencies(The 46th Annual Meeting of the Biophysical Society of Japan). Seibutsu Butsuri, 2008, 48, S74-S75.	0.0	0
31	Deep-UV resonance Raman imaging of a cell (Conference Presentation). , 2016, , .		0
32	Deep-UV plasmonics of indium (Conference Presentation). , 2016, , .		0
33	Using saturated absorption for superâ€resolution laser scanning transmission microscopy. Journal of Microscopy, 2021, , .	0.8	0
34	High-throughput discrimination of cancerous and noncancerous human cell lines by high-speed spontaneous Raman microscopy. , 2020, , .		0
35	Deep-ultraviolet microscopy for tryptophan label-free imaging in cells and tissue. , 2022, , 25-39.		0