
Justin J Skowno

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4501358/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nearâ€infrared spectroscopy: More than just monitoring brain oxygenation. Paediatric Anaesthesia, 2022, 32, 394-395.	0.6	1
2	Response to letter from Lönnqvist et al. on our recent Editorial "Near Infrared Spectroscopy: More Than Just Monitoring Brain Oxygenation― Paediatric Anaesthesia, 2022, 32, 688-688.	0.6	0
3	Isoelectric Electroencephalography in Infants and Toddlers during Anesthesia for Surgery: An International Observational Study. Anesthesiology, 2022, 137, 187-200.	1.3	13
4	The seroprevalence of <scp>SARSâ€CoV</scp> â€2â€specific antibodies in children, Australia, November 2020 – March 2021. Medical Journal of Australia, 2022, 217, 43-45.	0.8	9
5	Off-label use of dexmedetomidine in paediatric anaesthesiology: an international survey of 791 (paediatric) anaesthesiologists. European Journal of Clinical Pharmacology, 2021, 77, 625-635.	0.8	16
6	Lighting a candle, or cursing the darkness? Delivering a climate friendly anaesthetic. Journal of Paediatrics and Child Health, 2021, 57, 1781-1784.	0.4	8
7	Xenoâ€oximetry—Cerebral oximeters and animal models. Paediatric Anaesthesia, 2020, 30, 4-5.	0.6	0
8	Hemodynamic monitoring in children with heart disease: Overview of newer technologies. Paediatric Anaesthesia, 2019, 29, 467-474.	0.6	4
9	Statistical Analysis Plan for "An international multicenter study of isoelectric electroencephalography events in infants and young children during anesthesia for surgery― Paediatric Anaesthesia, 2019, 29, 243-249.	0.6	7
10	<i>>H</i> igh-flow oxygen for children's <i>a</i> irway surgery: rando <i>m</i> i <i>s</i> ed controll <i>e</i> d <i>t</i> rial protocol (HAMSTER). BMJ Open, 2019, 9, e031873.	0.8	5
11	Neuromonitoring in paediatric anaesthesia. Current Opinion in Anaesthesiology, 2019, 32, 370-376.	0.9	13
12	An open label pilot study of a dexmedetomidineâ€remifentanilâ€caudal anesthetic for infant lower abdominal/lower extremity surgery: The T REX pilot study. Paediatric Anaesthesia, 2019, 29, 59-67.	0.6	33
13	The impact of general anesthesia on child development and school performance: a populationâ€based study. Paediatric Anaesthesia, 2018, 28, 528-536.	0.6	81
14	An International, Multicenter, Observational Study of Cerebral Oxygenation during Infant and Neonatal Anesthesia. Anesthesiology, 2018, 128, 85-96.	1.3	53
15	Reply to Ritchieâ€McLean, Susanna; Wilmshurst, Sally, regarding their comment "Can population cohort studies assess the longâ€ŧerm impact of anesthesia in children?― Paediatric Anaesthesia, 2018, 28, 1157-1158.	0.6	1
16	Continuing stories with discontinuity. Paediatric Anaesthesia, 2017, 27, 224-225.	0.6	2
17	Perioperative Hypotension in Infants: Insights From the GAS Study. Anesthesia and Analgesia, 2017, 125, 719-720.	1.1	10
18	Using a pulse oximeter to determine clinical depth of anesthesia—investigation of the utility of the perfusion index. Paediatric Anaesthesia, 2016, 26, 1106-1111.	0.6	20

JUSTIN J SKOWNO

#	Article	IF	CITATIONS
19	Can transcutaneous near infrared spectroscopy detect severe hepatic ischemia: a juvenile porcine model. Paediatric Anaesthesia, 2016, 26, 1188-1196.	0.6	7
20	Cerebral oxygen saturation and tissue hemoglobin concentration as predictive markers of early postoperative outcomes after pediatric cardiac surgery. Paediatric Anaesthesia, 2016, 26, 182-189.	0.6	26
21	Staying away from the edge $\hat{a} \in$ " cerebral oximetry guiding blood pressure management. Paediatric Anaesthesia, 2015, 25, 654-655.	0.6	10
22	Evidence of cardiac functional reserve upon exhaustion during incremental exercise to determine VO _{2max} . British Journal of Sports Medicine, 2015, 49, 128-132.	3.1	17
23	Near-infrared spectroscopy for monitoring renal transplant perfusion. Pediatric Nephrology, 2014, 29, 2241-2242.	0.9	4
24	Study protocol for the PHANTOM study: prehospital assessment of noninvasive tissue oximetry monitoring. Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine, 2014, 22, 57.	1.1	3
25	Near-infrared spectroscopy for detection of vascular compromise in paediatric supracondylar fractures. Physiological Measurement, 2014, 35, 471-481.	1.2	4
26	New technologies in pediatric anesthesia. Paediatric Anaesthesia, 2012, 22, 952-961.	0.6	31
27	Measurement of cardiac output during exercise in healthy, trained humans using lithium dilution and pulse contour analysis. Physiological Measurement, 2012, 33, 1691-1701.	1.2	5
28	In reply: Cerebral NIRS and superior vena cava ScvO ₂ should not be compared. Paediatric Anaesthesia, 2012, 22, 181-181.	0.6	1
29	Correlating cerebral NIRS and superior vena cava ScvO ₂ in pediatrics. Paediatric Anaesthesia, 2011, 21, 463-463.	0.6	3
30	Cardiac output measurement in pediatric anesthesia. Paediatric Anaesthesia, 2008, 18, 1019-1028.	0.6	42
31	The anaesthesiologist in the intensive care unit. Current Opinion in Anaesthesiology, 2003, 16, 401-407.	0.9	2