Yuu Ishimori

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4501241/publications.pdf

Version: 2024-02-01

840776 888059 41 351 11 17 citations h-index g-index papers 43 43 43 247 citing authors all docs docs citations times ranked

#	Article	IF	Citations
1	Physiologically Based Pharmacokinetic Modeling of Inhaled Radon to Calculate Absorbed Doses in Mice, Rats, and Humans. Journal of Nuclear Science and Technology, 2010, 47, 731-738.	1.3	48
2	Intercomparison Exercise of Measurement Techniques for Radon, Radon Decay Products and Their Particle Size Distributions at NIRS. Japanese Journal of Health Physics, 2005, 40, 183-190.	0.1	30
3	Dependence of radon emanation of soil on lithology. Journal of Radioanalytical and Nuclear Chemistry, 2015, 304, 1321-1327.	1.5	25
4	Measurements of radon around closed uranium mines. Journal of Environmental Radioactivity, 2002, 62, 97-114.	1.7	19
5	Radon Intercomparison Experiment at PTB in Germany. Japanese Journal of Health Physics, 2004, 39, 263-267.	0.1	17
6	Difference in the action mechanism of radon inhalation and radon hot spring water drinking in suppression of hyperuricemia in mice. Journal of Radiation Research, 2016, 57, 250-257.	1.6	16
7	Lung dosimetry of inhaled radon progeny in mice. Radiation and Environmental Biophysics, 2012, 51, 425-442.	1.4	15
8	Radon inhalation induces manganese-superoxide dismutase in mouse brain via nuclear factor-κB activation. Journal of Radiation Research, 2017, 58, 887-893.	1.6	15
9	Calculation of temperature dependence of radon emanation due to alpha recoil. Journal of Radioanalytical and Nuclear Chemistry, 2014, 299, 2013-2017.	1.5	13
10	Application of support vector machine to rapid classification of uranium waste drums using low-resolution \hat{I}^3 -ray spectra. Applied Radiation and Isotopes, 2015, 104, 143-146.	1.5	13
11	Suppression of Radon Exhalation from Soil by Covering with Clay-mixed Soil. Journal of Nuclear Science and Technology, 2007, 44, 791-800.	1.3	12
12	Performance of the first Japanese large-scale facility for radon inhalation experiments with small animals. Radiation Protection Dosimetry, 2011, 146, 31-33.	0.8	12
13	Absorbed doses of lungs from radon retained in airway lumens of mice and rats. Radiation and Environmental Biophysics, 2013, 52, 389-395.	1.4	11
14	Primary Functions of the First Japanese Large-Scale Facility for Exposing Small Animals to Radon. Japanese Journal of Health Physics, 2010, 45, 65-71.	0.1	11
15	Evaluation of the intake of radon through skin from thermal water. Journal of Radiation Research, 2016, 57, 336-342.	1.6	10
16	Mechanisms and Modeling Approaches of Radon Emanation for Natural Materials. Japanese Journal of Health Physics, 2017, 52, 296-306.	0.1	10
17	Physiologically Based Pharmacokinetic Modeling of Inhaled Radon to Calculate Absorbed Doses in Mice, Rats, and Humans. Journal of Nuclear Science and Technology, 2010, 47, 731-738.	1.3	10
18	Measurements of radon activity concentration in mouse tissues and organs. Radiation and Environmental Biophysics, 2017, 56, 161-165.	1.4	9

#	Article	IF	Citations
19	Radon Reference Chamber for Calibration of the Monitors. Radioisotopes, 1999, 48, 725-731.	0.2	7
20	Inhibitory Effects of Pre and Post Radon Inhalation on Carbon Tetrachloride-induced Oxidative Damage in Mouse Organs. Radioisotopes, 2012, 61, 231-241.	0.2	7
21	Comparison of antioxidative effects between radon and thoron inhalation in mouse organs. Radiation and Environmental Biophysics, 2020, 59, 473-482.	1.4	6
22	Time-integrated monitoring of radon progeny around a closed uranium mine in Japan. Journal of Environmental Radioactivity, 2007, 93, 51-61.	1.7	5
23	Characteristics of 222Rn Measurement with a Gas-filled Ionization Chamber. Radioisotopes, 2005, 54, 599-608.	0.2	5
24	An Integrating Radon Progeny Monitor for Environmental Monitoring. Japanese Journal of Health Physics, 2000, 35, 193-201.	0.1	5
25	Suppression of Radon Exhalation from Soil by Covering with Clay-mixed Soil. Journal of Nuclear Science and Technology, 2007, 44, 791-800.	1.3	4
26	Dosimetry of radon progeny deposited on skin in air and thermal water. Journal of Radiation Research, 2021, 62, 634-644.	1.6	3
27	Traceability on Radon Measurements at the JAEA Ningyo-toge. Japanese Journal of Health Physics, 2007, 42, 247-254.	0.1	3
28	Analysis of Variations in Observed Ambient Dose Rates Due to Rainfall or Snowfall at JAEA Ningyo-toge. Japanese Journal of Health Physics, 2016, 51, 107-114.	0.1	2
29	Environmental monitoring of trace elements and evaluation of environmental impacts to organisms near a former uranium mining site in Nigyo-toge, Japan. Environmental Monitoring and Assessment, 2022, 194, 415.	2.7	2
30	Verification of a Quantitative Method of Uranium238 in the Radioactive Waste Using Photon Occurred by Compton Effect. Radioisotopes, 2015, 64, 687-696.	0.2	1
31	One-year Measurements of Gamma-ray Background Using a High-purity Germanium Detector. Japanese Journal of Health Physics, 2016, 51, 245-250.	0.1	1
32	Production and detection of fission-induced neutrons following fast neutron direct interrogation to various dry materials containing 235U. Journal of Nuclear Science and Technology, 2018, 55, 605-613.	1.3	1
33	METHODOLOGY FOR SIMPLE SPOT MEASUREMENT OF EQUILIBRIUM EQUIVALENT RADON CONCENTRATION. Radiation Protection Dosimetry, 2020, 191, 383-390.	0.8	1
34	Concentration ratios of 238U and 226Ra for insects and amphibians living in the vicinity of the closed uranium mine at Ningyo-toge, Japan. Journal of Radiation Research, 2020, 61, 207-213.	1.6	1
35	A comparative study on effect of continuous radon inhalation on several-time acute alcohol-induced oxidative damages of liver and brain in mouse. Radiation Safety Management, 2011, 10, 1-7.	0.4	1
36	Feasibility Study on Phytoremediation Techniques for Soil Contaminated by the Fukushima Dai-Ichi Nuclear Power Plant Accident., 2013,,.		0

3

Yuu İshimori

#	Article	IF	CITATIONS
37	Current Status of IAEA Safety Standards for Radiation Safety. Japanese Journal of Health Physics, 2014, 49, 104-113.	0.1	O
38	Epidemiological Studies on Indoor Radon Risk A Review and Current Issues. Japanese Journal of Health Physics, 2007, 42, 201-213.	0.1	0
39	Radon Impact at a Remediated Uranium Mine Site in Japan. , 2010, , .		O
40	Short History of Japanese Journal of Health Physics. Japanese Journal of Health Physics, 2015, 50, 225-226.	0.1	0
41	Short History of Japanese Journal of Health Physics. Japanese Journal of Health Physics, 2015, 50, 199-199.	0.1	0