
## Damien Daval

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4500164/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Influence of amorphous silica layer formation on the dissolution rate of olivine at 90°C and elevated pCO2. Chemical Geology, 2011, 284, 193-209.                                                                              | 3.3  | 251       |
| 2  | Unifying natural and laboratory chemical weathering with interfacial dissolution–reprecipitation: A<br>study based on the nanometer-scale chemistry of fluid–silicate interfaces. Chemical Geology, 2012,<br>294-295, 203-216. | 3.3  | 234       |
| 3  | Carbonation of Ca-bearing silicates, the case of wollastonite: Experimental investigations and kinetic modeling. Chemical Geology, 2009, 265, 63-78.                                                                           | 3.3  | 225       |
| 4  | Mechanism of wollastonite carbonation deduced from micro- to nanometer length scale observations. American Mineralogist, 2009, 94, 1707-1726.                                                                                  | 1.9  | 117       |
| 5  | Linking nm-scale measurements of the anisotropy of silicate surface reactivity to macroscopic<br>dissolution rate laws: New insights based on diopside. Geochimica Et Cosmochimica Acta, 2013, 107,<br>121-134.                | 3.9  | 90        |
| 6  | Early entombment within silica minimizes the molecular degradation of microorganisms during advanced diagenesis. Chemical Geology, 2016, 437, 98-108.                                                                          | 3.3  | 75        |
| 7  | Enhanced Olivine Carbonation within a Basalt as Compared to Single-Phase Experiments: Reevaluating the Potential of CO <sub>2</sub> Mineral Sequestration. Environmental Science & Technology, 2014, 48, 5512-5519.            | 10.0 | 70        |
| 8  | Pore-Scale Geochemical Reactivity Associated with CO <sub>2</sub> Storage: New Frontiers at the Fluid–Solid Interface. Accounts of Chemical Research, 2017, 50, 759-768.                                                       | 15.6 | 70        |
| 9  | The role of Fe and redox conditions in olivine carbonation rates: An experimental study of the rate<br>limiting reactions at 90 and 150 °C in open and closed systems. Geochimica Et Cosmochimica Acta, 2013,<br>118, 157-183. | 3.9  | 68        |
| 10 | Lizardite serpentine dissolution kinetics as a function of pH and temperature, including effects of elevated pCO2. Chemical Geology, 2013, 351, 245-256.                                                                       | 3.3  | 66        |
| 11 | Geothermal implications for fracture-filling hydrothermal precipitation. Geothermics, 2016, 64, 235-245.                                                                                                                       | 3.4  | 58        |
| 12 | pH-dependent control of feldspar dissolution rate by altered surface layers. Chemical Geology, 2016,<br>442, 148-159.                                                                                                          | 3.3  | 53        |
| 13 | CO2 geological storage: The environmental mineralogy perspective. Comptes Rendus - Geoscience, 2011, 343, 246-259.                                                                                                             | 1.2  | 52        |
| 14 | Dissolution kinetics of diopside as a function of solution saturation state: Macroscopic<br>measurements and implications for modeling of geological storage of CO2. Geochimica Et<br>Cosmochimica Acta, 2010, 74, 2615-2633.  | 3.9  | 48        |
| 15 | Does crystallographic anisotropy prevent the conventional treatment of aqueous mineral reactivity?<br>A case study based on K-feldspar dissolution kinetics. Geochimica Et Cosmochimica Acta, 2016, 190,<br>294-308.           | 3.9  | 48        |
| 16 | Organic molecular heterogeneities can withstand diagenesis. Scientific Reports, 2017, 7, 1508.                                                                                                                                 | 3.3  | 48        |
| 17 | Burial-induced oxygen-isotope re-equilibration of fossil foraminifera explains ocean paleotemperature paradoxes. Nature Communications, 2017, 8, 1134.                                                                         | 12.8 | 48        |
| 18 | The deleterious effect of secondary phases on olivine carbonation yield: Insight from time-resolved aqueous-fluid sampling and FIB-TEM characterization. Chemical Geology, 2013, 357, 186-202.                                 | 3.3  | 47        |

| #  | Article                                                                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Growth of Nanosized Calcite through Gasâ^'Solid Carbonation of Nanosized Portlandite under<br>Anisobaric Conditions. Crystal Growth and Design, 2010, 10, 4823-4830.                                                   | 3.0 | 43        |
| 20 | The dependence of albite feldspar dissolution kinetics on fluid saturation state at acid and basic pH:<br>Progress towards a universal relation. Comptes Rendus - Geoscience, 2010, 342, 676-684.                      | 1.2 | 43        |
| 21 | Fayalite (Fe2SiO4) dissolution kinetics determined by X-ray absorption spectroscopy. Chemical Geology, 2010, 275, 161-175.                                                                                             | 3.3 | 40        |
| 22 | Influence of etch pit development on the surface area and dissolution kinetics of the orthoclase (001) surface. Chemical Geology, 2016, 447, 79-92.                                                                    | 3.3 | 34        |
| 23 | Examination of crystal dissolution in 3D: A way to reconcile dissolution rates in the laboratory?.<br>Geochimica Et Cosmochimica Acta, 2020, 273, 1-25.                                                                | 3.9 | 33        |
| 24 | Carbon dioxide sequestration through silicate degradation and carbon mineralisation: promises and uncertainties. Npj Materials Degradation, 2018, 2, .                                                                 | 5.8 | 31        |
| 25 | From mixed flow reactor to column experiments and modeling: Upscaling of calcite dissolution rate.<br>Chemical Geology, 2018, 487, 63-75.                                                                              | 3.3 | 31        |
| 26 | Mineralogical evolution of Fe–Si-rich layers at the olivine-water interface during carbonation reactions. American Mineralogist, 2015, 100, 2655-2669.                                                                 | 1.9 | 30        |
| 27 | Time-dependent feldspar dissolution rates resulting from surface passivation: Experimental evidence and geochemical implications. Earth and Planetary Science Letters, 2018, 498, 226-236.                             | 4.4 | 30        |
| 28 | Integrative analysis of the mineralogical and chemical composition of modern microbialites from ten<br>Mexican lakes: What do we learn about their formation?. Geochimica Et Cosmochimica Acta, 2021, 305,<br>148-184. | 3.9 | 28        |
| 29 | Dynamics of altered surface layer formation on dissolving silicates. Geochimica Et Cosmochimica Acta, 2017, 209, 51-69.                                                                                                | 3.9 | 27        |
| 30 | Geochemical Conditions Allowing the Formation of Modern Lacustrine Microbialites. Procedia Earth and Planetary Science, 2017, 17, 380-383.                                                                             | 0.6 | 27        |
| 31 | Comparing the reactivity of glasses with their crystalline equivalents: The case study of plagioclase feldspar. Geochimica Et Cosmochimica Acta, 2019, 254, 122-141.                                                   | 3.9 | 27        |
| 32 | Experimental study and numerical simulation of the dissolution anisotropy of tricalcium silicate.<br>Chemical Geology, 2018, 497, 64-73.                                                                               | 3.3 | 26        |
| 33 | Effect of pH on the stability of passivating gel layers formed on International Simple Glass. Journal of<br>Nuclear Materials, 2019, 524, 21-38.                                                                       | 2.7 | 25        |
| 34 | In-situ dissolution rates of silicate minerals and associated bacterial communities in the critical zone<br>(Strengbach catchment, France). Geochimica Et Cosmochimica Acta, 2019, 249, 95-120.                        | 3.9 | 24        |
| 35 | Early stages of bacterial community adaptation to silicate aging. Geology, 2018, 46, 555-558.                                                                                                                          | 4.4 | 15        |
| 36 | Direct measurement of fungal contribution to silicate weathering rates in soil. Geology, 2021, 49, 1055-1058.                                                                                                          | 4.4 | 15        |

| #  | Article                                                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Formation of Amorphous Silica Surface Layers by Dissolution-Reprecipitaton During Chemical<br>Weathering: Implications for CO2 Uptake. Procedia Earth and Planetary Science, 2013, 7, 346-349.                                                             | 0.6  | 14        |
| 38 | Rate-limiting reaction of C 3 S hydration - A reply to the discussion "A new view on the kinetics of tricalcium silicate hydration―by E. Gartner. Cement and Concrete Research, 2018, 104, 118-122.                                                        | 11.0 | 14        |
| 39 | Control of the mobilization of arsenic and other natural pollutants in groundwater by calcium<br>carbonate concretions in the Pampean Aquifer, southeast of the Buenos Aires province, Argentina.<br>Science of the Total Environment, 2019, 674, 532-543. | 8.0  | 13        |
| 40 | Physical Properties of Interfacial Layers Developed on Weathered Silicates: A Case Study Based on<br>Labradorite Feldspar. Journal of Physical Chemistry C, 2019, 123, 24520-24532.                                                                        | 3.1  | 12        |
| 41 | Linear growth rate of nanosized calcite synthesized via gas–solid carbonation of Ca(OH)2 particles in a static bed reactor. Chemical Engineering Journal, 2012, 180, 237-244.                                                                              | 12.7 | 10        |
| 42 | Importance of accessory minerals for the control of water chemistry of the Pampean aquifer, province of Buenos Aires, Argentina. Catena, 2018, 160, 112-123.                                                                                               | 5.0  | 10        |
| 43 | Generalized Subâ€Gaussian Processes: Theory and Application to Hydrogeological and Geochemical Data.<br>Water Resources Research, 2020, 56, e2020WR027436.                                                                                                 | 4.2  | 10        |
| 44 | The Dissolution Anisotropy of Pyroxenes: Experimental Validation of a Stochastic Dissolution Model Based on Enstatite Dissolution. Journal of Physical Chemistry C, 2020, 124, 3122-3140.                                                                  | 3.1  | 10        |
| 45 | Theoretical Considerations on the Characteristic Timescales of Hydrogen Generation by<br>Serpentinization Reactions on Enceladus. Journal of Geophysical Research E: Planets, 2022, 127, .                                                                 | 3.6  | 10        |
| 46 | Barite Growth Rates as a Function of Crystallographic Orientation, Temperature, And Solution Saturation State. Crystal Growth and Design, 2020, 20, 3663-3672.                                                                                             | 3.0  | 9         |
| 47 | Fast and pervasive diagenetic isotope exchange in foraminifera tests is species-dependent. Nature<br>Communications, 2022, 13, 113.                                                                                                                        | 12.8 | 9         |
| 48 | Experimental Study of Dissolution Kinetics of K-feldspar as a Function of Crystal Structure<br>Anisotropy under Hydrothermal Conditions. Procedia Earth and Planetary Science, 2017, 17, 165-168.                                                          | 0.6  | 7         |
| 49 | Dissolution Anisotropy of Pyroxenes: A Surrogate Model for Steady-State Enstatite Dissolution<br>Resulting from Stochastic Simulations of the Hydrolysis Process. Journal of Physical Chemistry C,<br>2020, 124, 13113-13126.                              | 3.1  | 7         |
| 50 | Dissolution Anisotropy of Pyroxenes: Role of Edges and Corners Inferred from Stochastic<br>Simulations of Enstatite Dissolution. Journal of Physical Chemistry C, 2021, 125, 7658-7674.                                                                    | 3.1  | 7         |
| 51 | A comparative study of the dissolution mechanisms of amorphous and crystalline feldspars at acidic pH conditions. Npj Materials Degradation, 2022, 6, .                                                                                                    | 5.8  | 7         |
| 52 | GaMin'11 – an International Inter-laboratory Comparison for Geochemical CO2 - Saline Fluid - Mineral<br>Interaction Experiments. Energy Procedia, 2014, 63, 5538-5543.                                                                                     | 1.8  | 6         |
| 53 | Estimating the activation energy of bond hydrolysis by time-resolved weighing of dissolving crystals.<br>Npj Materials Degradation, 2021, 5, .                                                                                                             | 5.8  | 6         |
| 54 | Symbiotic cooperation between freshwater rock-boring bivalves and microorganisms promotes silicate bioerosion. Scientific Reports, 2020, 10, 13385.                                                                                                        | 3.3  | 5         |

| #  | Article                                                                                                                                                                                                 | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Statistical Description of Calcite Surface Roughness Resulting from Dissolution at<br>Close-to-Equilibrium Conditions. ACS Earth and Space Chemistry, 2021, 5, 3115-3129.                               | 2.7  | 4         |
| 56 | Experimental determination of the reactivity of the Frio Sandstone, Texas, and the fate of heavy metals resulting from carbon dioxide sequestration. Environmental Earth Sciences, 2015, 74, 5501-5516. | 2.7  | 3         |
| 57 | Reply to 'No substantial long-term bias in the Cenozoic benthic foraminifera oxygen-isotope record'.<br>Nature Communications, 2018, 9, 2874.                                                           | 12.8 | 1         |
| 58 | Species-specific foraminiferal ultrastructures modulate surfaces available for diagenesis. Microscopy and Microanalysis, 2021, 27, 274-275.                                                             | 0.4  | 1         |