
Rony E Amaya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4499925/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Compact Cavity-Based Leaky-Wave Antenna in a Low Temperature Co-Fired Ceramic Process With Improved Performance. IEEE Access, 2021, 9, 25014-25024.	4.2	3
2	An Active Bandpass Filter for LTE/WLAN Applications Using Robust Active Inductors in Gallium Nitride. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, 68, 2252-2256.	3.0	4
3	A tapered CPW fed leakyâ€wave antenna based on substrate integrated waveguide with reduced sideâ€lobe level. International Journal of RF and Microwave Computer-Aided Engineering, 2021, 31, e22607.	1.2	4
4	Direct printing of functional 3D objects using polymerization-induced phase separation. Nature Communications, 2021, 12, 55.	12.8	38
5	Portable Microwave Sensor Based on Frequency-Selective Surface for Grain Moisture Content Monitoring. , 2021, 5, 1-4.		9
6	Fixed Frequency Beam-Scanning HMSIW-Based Leaky-Wave Antenna Composed of Circular Slots in V-Shape Configuration. IEEE Access, 2021, 9, 52891-52901.	4.2	4
7	Reconfigurable SIW-Based Leaky-Wave Antenna Composed of Longitudinal Cells. IEEE Access, 2021, 9, 102304-102311.	4.2	3
8	A First Implementation of a Single-Layer 4×4 Butler Matrix on Flexible PET Using Printed Silver. , 2021, , .		0
9	Direct thermal emission testing of aperiodic dielectric stack for narrowband thermal emission at mid-IR. Journal of Applied Physics, 2020, 127, .	2.5	7
10	Millimeter-wave Bandpass Frequency Selective Structure Using Stacked Dielectric Slabs. , 2020, , .		1
11	Electronically Steerable Quasi-Uniform Leaky-Wave Antenna Based on Substrate Integrated Waveguide. , 2019, , .		1
12	Miniaturized Reconfigurable Antenna Based on Half-Mode Substrate Integrated Waveguide. , 2019, , .		1
13	A Compact and High-Gain Cavity-Backed Waveguide Aperture Antenna in the C-Band for High-Power Applications. IEEE Transactions on Antennas and Propagation, 2018, 66, 1208-1216.	5.1	5
14	A Novel Multifunctional EBG-Based Coupled-Line-Defect Directional Coupler Based on Layered Dielectric Substrates. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2018, 8, 2140-2151.	2.5	5
15	Leaky-Wave Antenna Based on Modified Aperture Half-Mode Substrate Integrated Waveguide. , 2018, , .		8
16	Reduced-Size On-Wafer Inductors using Slow Wave Techniques. , 2018, , .		0
17	An Adaptive Power Harvester with Active Load Modulation for Highly Efficient Short/Long Range RF WPT Applications. Electronics (Switzerland), 2018, 7, 125.	3.1	15
18	IMPROVED MEANDERED GYSEL COMBINER/DIVIDER DESIGN WITH STEPPED-IMPEDANCE LOAD LINE FOR HIGH-POWER APPLICATIONS. Progress in Electromagnetics Research C, 2016, 70, 53-62.	0.9	2

Rony E Amaya

#	Article	IF	CITATIONS
19	Low″oss compact power combiner for solid state power amplifiers with high reliability. IET Microwaves, Antennas and Propagation, 2016, 10, 310-317.	1.4	9
20	1 W, Highly Efficient, Ultra-Broadband Non-Uniform Distributed Power Amplifier in GaN. IEEE Microwave and Wireless Components Letters, 2013, 23, 208-210.	3.2	28
21	High-performance reduced-size 70–80 GHz CMOS branch-line hybrid using CPW and CPWG guided-wave structures. , 2012, , .		1
22	Design of mM-W Fully Integrated CMOS Standing-Wave VCOs Using Low-Loss CPW Resonators. IEEE Transactions on Circuits and Systems II: Express Briefs, 2012, 59, 78-82.	3.0	8
23	Adapting the Doherty amplifier for millimetre-wave CMOS applications. , 2011, , .		8
24	Particle swarm optimization in the determination of the optimal bias current for noise performance of gallium nitride HEMTs. Microwave and Optical Technology Letters, 2011, 53, 652-656.	1.4	3
25	<i>X</i> -Parameter Measurement of Pulse-Compression Nonlinear Transmission Lines. Journal of Electrical and Computer Engineering, 2010, 2010, 1-5.	0.9	1
26	Investigation of CMOS Varactors for High-GHz-Range Applications. Research Letters in Electronics, 2009, 2009, 1-4.	0.6	3
27	CMOS varactors in NLTL pulse-compression applications. , 2007, , .		0
28	CMOS varactors in NLTL pulse-compression applications. , 2007, , .		2
29	Low-Loss Low-Cost All-Silicon CMOS NLTLs for Pulse Compression. , 2007, , .		3
30	Silver coplanar waveguides as the passive components of choice for microwave integrated circuits. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2005, 23, 1924.	1.6	1