Job Kihara

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4499839/publications.pdf Version: 2024-02-01

304743 315739 2,079 49 22 38 citations h-index g-index papers 50 50 50 2087 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Participatory Action Research, Social Networks, and Gender Influence Soil Fertility Management in Tanzania. Systemic Practice and Action Research, 2023, 36, 141-163.	1.7	2
2	Unravelling causes of poor crop response to applied N and P fertilizers on African soils. Experimental Agriculture, 2022, 58, .	0.9	5
3	A data-mining approach for developing site-specific fertilizer response functions across the wheat-growing environments in Ethiopia. Experimental Agriculture, 2022, 58, .	0.9	4
4	Sustainable intensification of wheat production under smallholder farming systems in Burera, Musanze and Nyamagabe districts of Rwanda. Experimental Agriculture, 2022, 58, .	0.9	0
5	Application of residue, inorganic fertilizer and lime affect phosphorus solubilizing microorganisms and microbial biomass under different tillage and cropping systems in a Ferralsol. Geoderma, 2021, 390, 114962.	5.1	34
6	Simulating soil organic carbon in maize-based systems under improved agronomic management in Western Kenya. Soil and Tillage Research, 2021, 211, 105000.	5.6	7
7	Micronutrient deficiencies in African soils and the human nutritional nexus: opportunities with staple crops. Environmental Geochemistry and Health, 2020, 42, 3015-3033.	3.4	91
8	Soil health and ecosystem services: Lessons from sub-Sahara Africa (SSA). Geoderma, 2020, 370, 114342.	5.1	47
9	Unlocking maize crop productivity through improved management practices in northern Tanzania. African Journal of Food, Agriculture, Nutrition and Development, 2020, 20, 17095-17112.	0.2	3
10	Assessing Synergies and Trade-Offs from Nitrogen Use in Africa. , 2020, , 65-82.		2
11	Conservation Agriculture Enhances Soil Fauna Richness and Abundance in Low Input Systems: Examples From Kenya. Frontiers in Environmental Science, 2019, 7, .	3.3	19
12	Soil structural degradation and nutrient limitations across land use categories and climatic zones in Southern Africa. Land Degradation and Development, 2019, 30, 1288-1299.	3.9	28
13	Drivers of Phosphorus Efficiency in Tropical and Subtropical Cropping Systems. Proceedings (mdpi), 2019, 36, .	0.2	0
14	Decision support tools for site-specific fertilizer recommendations and agricultural planning in selected countries in sub-Sahara Africa. Nutrient Cycling in Agroecosystems, 2018, 110, 343-359.	2.2	14
15	Reducing losses but failing to sequester carbon in soils – the case of Conservation Agriculture and Integrated Soil Fertility Management in the humid tropical agro-ecosystem of Western Kenya. Agriculture, Ecosystems and Environment, 2018, 254, 82-91.	5.3	39
16	Decision Support Tools for Site-Specific Fertilizer Recommendations and Agricultural Planning in Selected Countries in Sub-Sahara Africa. , 2018, , 265-289.		7
17	Application of secondary nutrients and micronutrients increases crop yields in sub-Saharan Africa. Agronomy for Sustainable Development, 2017, 37, 1.	5.3	82
18	Impact of reduced tillage and crop residue management on soil properties and crop yields in a long-term trial in western Kenya. Soil Research, 2016, 54, 719.	1.1	4

Job Kihara

#	Article	IF	CITATIONS
19	Understanding variability in crop response to fertilizer and amendments in sub-Saharan Africa. Agriculture, Ecosystems and Environment, 2016, 229, 1-12.	5.3	164
20	Determinants of integrated soil fertility management technologies adoption by smallholder farmers in the Chinyanja Triangle of Southern Africa. Land Use Policy, 2016, 59, 38-48.	5.6	55
21	Assessment of maize yield gap and major determinant factors between smallholder farmers in the Dedza district of Malawi. Nutrient Cycling in Agroecosystems, 2016, 105, 291-308.	2.2	37
22	Nitrogen dynamics and nitrous oxide emissions in a long-term trial on integrated soil fertility management in Western Kenya. Nutrient Cycling in Agroecosystems, 2016, 105, 229-248.	2.2	15
23	Maize response to macronutrients and potential for profitability in sub-Saharan Africa. Nutrient Cycling in Agroecosystems, 2016, 105, 171-181.	2.2	46
24	Long-term effects of TSP and Minjingu phosphate rock applications on yield response of maize and soybean in a humid tropical maize–legume cropping system. Nutrient Cycling in Agroecosystems, 2016, 104, 79-91.	2.2	17
25	Phosphorus in smallholder farming systems of sub-Saharan Africa: implications for agricultural intensification. Nutrient Cycling in Agroecosystems, 2016, 104, 321-340.	2.2	98
26	The Role of Forages in Sustainable Intensification of Crop-Livestock Agro-ecosystems in the Face of Climate Change: The Case for Landscapes in Babati, Northern Tanzania. , 2016, , 411-430.		2
27	Minjingu phosphate rock availability in low-pH highly weathered soil as affected by added salts. Scientia Agricola, 2015, 72, 440-451.	1.2	6
28	Agronomic survey to assess crop yield, controlling factors and management implications: a case-study of Babati in northern Tanzania. Nutrient Cycling in Agroecosystems, 2015, 102, 5-16.	2.2	40
29	Crop residue disappearance and macrofauna activity in sub-humid western Kenya. Nutrient Cycling in Agroecosystems, 2015, 102, 101-111.	2.2	22
30	Soil carbon, multiple benefits. Environmental Development, 2015, 13, 33-38.	4.1	75
31	Phosphorus agronomic efficiency in maize-based cropping systems: A focus on western Kenya. Field Crops Research, 2013, 150, 1-8.	5.1	47
32	EFFECT OF REDUCED TILLAGE AND MINERAL FERTILIZER APPLICATION ON MAIZE AND SOYBEAN PRODUCTIVITY. Experimental Agriculture, 2012, 48, 159-175.	0.9	24
33	The Agricultural Model Intercomparison and Improvement Project (AgMIP): Integrated Regional Assessment Projects. ICP Series on Climate Change Impacts, Adaptation, and Mitigation, 2012, , 263-280.	0.4	6
34	Soil aggregation and total diversity of bacteria and fungi in various tillage systems of sub-humid and semi-arid Kenya. Applied Soil Ecology, 2012, 58, 12-20.	4.3	72
35	Building Capacity for Modeling in Africa. , 2012, , 1-7.		2

Beyond Biophysical Recommendations: Towards a New Paradigm. , 2012, , 169-184.

8

Job Kihara

#	Article	IF	CITATIONS
37	Crop and Soil Response to Tillage and Crop Residue Application in a Tropical Ferralsol in Sub-humid Western Kenya. , 2012, , 41-57.		1
38	Effects of Tillage and Crop Residue Application on Soybean Nitrogen Fixation in a Tropical Ferralsol. Agriculture (Switzerland), 2011, 1, 22-37.	3.1	20
39	Conservation tillage, local organic resources and nitrogen fertilizer combinations affect maize productivity, soil structure and nutrient balances in semi-arid Kenya. Nutrient Cycling in Agroecosystems, 2011, 90, 213-225.	2.2	35
40	Agronomic use efficiency of N fertilizer in maize-based systems in sub-Saharan Africa within the context of integrated soil fertility management. Plant and Soil, 2011, 339, 35-50.	3.7	309
41	STRATEGIC PHOSPHORUS APPLICATION IN LEGUME-CEREAL ROTATIONS INCREASES LAND PRODUCTIVITY AND PROFITABILITY IN WESTERN KENYA. Experimental Agriculture, 2010, 46, 35-52.	0.9	34
42	Integrated Nutrient Management. , 2008, , 467-521.		0
43	Soil Climate and Decomposer Activity in Sub-Saharan Africa Estimated from Standard Weather Station Data: A Simple Climate Index for Soil Carbon Balance Calculations. Ambio, 2007, 36, 379-386.	5.5	29
44	Advances in integrated soil fertility management in sub Saharan Africa: challenges and opportunities. Nutrient Cycling in Agroecosystems, 2007, , 1.	2.2	29
45	Soil organic carbon dynamics, functions and management in West African agro-ecosystems. Agricultural Systems, 2007, 94, 13-25.	6.1	345
46	Partial balance of nitrogen in a maize cropping system in humic nitisol of Central Kenya. Nutrient Cycling in Agroecosystems, 2007, 76, 261-270.	2.2	22
47	Appropriate technologies to replenish soil fertility in southern Africa. Nutrient Cycling in Agroecosystems, 2007, 76, 137-151.	2.2	127
48	Partial balance of nitrogen in a maize cropping system in humic nitisol of Central Kenya. , 2007, , 521-530.		3
49	Understanding factors influencing wheat productivity in Ethiopian highlands. Experimental Agriculture, 0, , 1-18.	0.9	1