
Yonghui Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4499789/publications.pdf Version: 2024-02-01

<u> Холсниі Шалс</u>

#	Article	IF	CITATIONS
1	Flexural behaviours of one-way steel-concrete-steel sandwich panels with novel hybrid connectors: Tests and analysis. Journal of Constructional Steel Research, 2022, 188, 107013.	3.9	7
2	Experimental and numerical studies on novel stiffener-enhanced steel-concrete-steel sandwich panels subjected to impact loading. Journal of Building Engineering, 2022, 45, 103479.	3.4	5
3	Behaviour of a novel stiffener-enhanced steel–concrete–steel sandwich beam subjected to impact loading. Thin-Walled Structures, 2021, 165, 107989.	5.3	21
4	Finite Element Modeling of Steel–Concrete–Steel Sandwich Beams with Bolt Connectors Under Drop Weight Impact. International Journal of Steel Structures, 2021, 21, 1878-1893.	1.3	3
5	Experimental and numerical studies on steel-polyurethane foam-steel–concrete-steel panel under impact loading by a hemispherical head. Engineering Structures, 2021, 247, 113201.	5.3	20
6	Behavior of steel-concrete-steel sandwich beams with blot connectors under off-center impact load. Journal of Constructional Steel Research, 2021, 186, 106889.	3.9	13
7	Impact response of steel-PU foam-steel-concrete-steel panel: Experimental, numerical and analytical studies. International Journal of Impact Engineering, 2021, 158, 104007.	5.0	16
8	Response of flat steel-concrete-corrugated steel sandwich panel under drop-weight impact load by a hemi-spherical head. Journal of Building Engineering, 2021, 44, 102890.	3.4	7
9	Energy absorption behaviour of an aluminium foam-filled circular-triangular nested tube energy absorber under impact loading. Structures, 2021, 34, 95-104.	3.6	33
10	Impact behavior of a cladding sandwich panel with aluminum foam-filled tubular cores. Thin-Walled Structures, 2021, 169, 108459.	5.3	27
11	Numerical Study and Multi-objective Optimization of an Energy Absorbing Connector with Curved Plate and Aluminum Foam. International Journal of Steel Structures, 2020, 20, 287-299.	1.3	1
12	Crushing of energy absorption connectors with polyurethane foam and asymmetric pleated plates. Journal of Constructional Steel Research, 2020, 166, 105902.	3.9	11
13	Energy absorption performance of a new circular–triangular nested tube and its application as sacrificial cladding. Thin-Walled Structures, 2020, 157, 106992.	5.3	25
14	Modeling and Dynamic Response of Curved Steel–Concrete–Steel Sandwich Shells Under Blast Loading. International Journal of Steel Structures, 2020, 20, 1663-1681.	1.3	9
15	Low velocity impact performance of curved steel-concrete-steel sandwich shells with bolt connectors. Thin-Walled Structures, 2020, 150, 106672.	5.3	38
16	Quasi-static crushing behaviour of the energy absorbing connector with polyurethane foam and multiple pleated plates. Engineering Structures, 2020, 211, 110404.	5.3	11
17	Strength assessment of curved steel-concrete-steel sandwich shells with bolt connectors under concentrated load. Engineering Structures, 2020, 212, 110465.	5.3	31
18	Dynamic Crushing Behaviors of Aluminum Foam Filled Energy Absorption Connectors. International Journal of Steel Structures, 2019, 19, 241-254.	1.3	8

Yonghui Wang

#	Article	IF	CITATIONS
19	Response of energy absorbing connector with polyurethane foam and multiple pleated plates under impact loading. International Journal of Impact Engineering, 2019, 133, 103356.	5.0	20
20	Experimental, numerical, and analytical studies on polyurethane foam-filled energy absorption connectors under quasi-static loading. Thin-Walled Structures, 2019, 144, 106257.	5.3	9
21	Development of dimensionless P-I diagram for curved SCS sandwich shell subjected to uniformly distributed blast pressure. Frontiers of Structural and Civil Engineering, 2019, 13, 1432-1445.	2.9	2
22	Experimental study on curved steel-concrete-steel sandwich shells under concentrated load by a hemi-spherical head. Thin-Walled Structures, 2019, 137, 117-128.	5.3	29
23	Numerical Modeling and Dynamic Response of 160,000-m3 Liquefied Natural Gas Outer Tank under Aircraft Impact. Journal of Performance of Constructed Facilities, 2019, 33, 04019039.	2.0	7
24	Damage model and damage assessment for single-layer reticulated domes under exterior blast load. Mechanics Based Design of Structures and Machines, 2019, 47, 319-338.	4.7	6
25	Shear failure mechanisms of SCS sandwich beams considering bond-slip between steel plates and concrete. Engineering Structures, 2019, 181, 458-475.	5.3	34
26	Thermal performance of precast concrete sandwich walls with a novel hybrid connector. Energy and Buildings, 2018, 166, 109-121.	6.7	24
27	Dynamic crushing response of an energy absorption connector with curved plate and aluminum foam as energy absorber. International Journal of Impact Engineering, 2018, 121, 119-133.	5.0	21
28	Experimental, numerical and analytical studies on the aluminum foam filled energy absorption connectors under impact loading. Thin-Walled Structures, 2018, 131, 566-576.	5.3	23
29	Numerical studies of aluminum foam filled energy absorption connectors under quasi-static compression loading. Thin-Walled Structures, 2017, 116, 225-233.	5.3	23
30	Crushing of a novel energy absorption connector with curved plate and aluminum foam as energy absorber. Thin-Walled Structures, 2017, 111, 145-154.	5.3	28
31	Stability of reticulated shell with steel panel as the bracing and time-varying structure for LNG tank during concrete dome casting. International Journal of Steel Structures, 2017, 17, 1145-1156.	1.3	2
32	Experimental and analytical studies of a novel aluminum foam filled energy absorption connector under quasi-static compression loading. Engineering Structures, 2017, 131, 136-147.	5.3	19
33	Evaluation on thermal behavior of concrete-filled steel tubular columns based on modified finite difference method. Advances in Structural Engineering, 2016, 19, 746-761.	2.4	13
34	Responses of curved steel-concrete-steel sandwich shells subjected to blast loading. Thin-Walled Structures, 2016, 108, 185-192.	5.3	46
35	Numerical and analytical investigation on a multilayer water façade system subjected to blast loading. Composite Structures, 2016, 158, 175-186.	5.8	4
36	A novel multi-functional water façade system for energy saving and blast resisting. Materials and Design, 2016, 106, 98-111.	7.0	10

Yonghui Wang

#	Article	IF	CITATIONS
37	Thermal stress analysis of concrete wall of LNG tank during construction period. Materials and Structures/Materiaux Et Constructions, 2016, 49, 2393-2406.	3.1	9
38	Ultimate strength of steel–concrete–steel sandwich panels under lateral pressure loading. Engineering Structures, 2016, 115, 96-106.	5.3	27
39	Experimental and numerical studies of non-composite Steel–Concrete–Steel sandwich panels under impulsive loading. Materials & Design, 2015, 81, 104-112.	5.1	31
40	Numerical study of water tank under blast loading. Thin-Walled Structures, 2015, 90, 42-48.	5.3	10
41	Energy absorption of graded foam subjected to blast: A theoretical approach. Materials and Design, 2015, 84, 351-358.	7.0	20
42	Blast performance of water tank with energy absorbing support. Thin-Walled Structures, 2015, 96, 1-10.	5.3	23
43	Structural performance of water tank under static and dynamic pressure loading. International Journal of Impact Engineering, 2015, 85, 110-123.	5.0	16
44	Analysis of axially restrained water storage tank under blast loading. International Journal of Impact Engineering, 2015, 86, 167-178.	5.0	20
45	Theoretical models for axially restrained steel-concrete-steel sandwich panels under blast loading. International Journal of Impact Engineering, 2015, 76, 221-231.	5.0	49
46	Performance and protection approach of single-layer reticulated dome subjected to blast loading. Thin-Walled Structures, 2013, 73, 57-67.	5.3	22
47	Modelling and Dynamic Response of Steel Reticulated Shell under Blast Loading. Shock and Vibration, 2013, 20, 19-28.	0.6	12

48 Heat Transfer Analysis of Water Storage Façade System. , 2013, , .

3