Karl Wette

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4499722/publications.pdf

Version: 2024-02-01

40 papers

3,939 citations

279798 23 h-index 315739 38 g-index

40 all docs

40 docs citations

40 times ranked

4658 citing authors

#	Article	IF	CITATIONS
1	Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light. Nature Photonics, 2013, 7, 613-619.	31.4	825
2	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2018, 21, 3.	26.7	808
3	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2020, 23, 3.	26.7	447
4	Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. Living Reviews in Relativity, 2016, 19, 1.	26.7	427
5	Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914. Classical and Quantum Gravity, 2016, 33, 134001.	4.0	225
6	A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo. Astrophysical Journal, 2021, 909, 218.	4.5	144
7	Implementing a search for aligned-spin neutron star-black hole systems with advanced ground based gravitational wave detectors. Physical Review D, 2014, 90, .	4.7	143
8	Neutron Star Extreme Matter Observatory: A kilohertz-band gravitational-wave detector in the global network. Publications of the Astronomical Society of Australia, 2020, 37, .	3.4	114
9	SEARCH FOR GRAVITATIONAL-WAVE INSPIRAL SIGNALS ASSOCIATED WITH SHORT GAMMA-RAY BURSTS DURING LIGO'S FIFTH AND VIRGO'S FIRST SCIENCE RUN. Astrophysical Journal, 2010, 715, 1453-1461.	4.5	90
10	Searching for gravitational waves from Cassiopeia A with LIGO. Classical and Quantum Gravity, 2008, 25, 235011.	4.0	75
11	The basic physics of the binary black hole merger GW150914. Annalen Der Physik, 2017, 529, 1600209.	2.4	69
12	Search for Gravitational Waves Associated with Gamma-Ray Bursts during the First Advanced LIGO Observing Run and Implications for the Origin of GRB 150906B. Astrophysical Journal, 2017, 841, 89.	4.5	52
13	Estimating the sensitivity of wide-parameter-space searches for gravitational-wave pulsars. Physical Review D, 2012, 85, .	4.7	51
14	Fast and accurate sensitivity estimation for continuous-gravitational-wave searches. Physical Review D, 2018, 98, .	4.7	48
15	Lattice template placement for coherent all-sky searches for gravitational-wave pulsars. Physical Review D, 2014, 90, .	4.7	32
16	Parameter-space metric for all-sky semicoherent searches for gravitational-wave pulsars. Physical Review D, 2015, 92, .	4.7	32
17	Flat parameter-space metric for all-sky searches for gravitational-wave pulsars. Physical Review D, 2013, 88, .	4.7	31
18	SPIIR online coherent pipeline to search for gravitational waves from compact binary coalescences. Physical Review D, 2022, 105, .	4.7	31

#	Article	IF	CITATIONS
19	The very faint X-ray binary IGR J17062-6143: a truncated disc, no pulsations, and a possible outflow. Monthly Notices of the Royal Astronomical Society, 2018, 475, 2027-2044.	4.4	30
20	Sinking of a magnetically confined mountain on an accreting neutron star. Monthly Notices of the Royal Astronomical Society, 2010, 402, 1099-1110.	4.4	29
21	Einstein@Home search for continuous gravitational waves from Cassiopeia A. Physical Review D, 2016, 94, .	4.7	28
22	Gingin High Optical Power Test Facility. Journal of Physics: Conference Series, 2006, 32, 368-373.	0.4	24
23	Implementing a semicoherent search for continuous gravitational waves using optimally constructed template banks. Physical Review D, 2018, 97, .	4.7	24
24	SWIGLAL: Python and Octave interfaces to the LALSuite gravitational-wave data analysis libraries. SoftwareX, 2020, 12, 100634.	2.6	21
25	First joint observation by the underground gravitational-wave detector KAGRA with GEO 600. Progress of Theoretical and Experimental Physics, 2022, 2022, .	6.6	20
26	Empirically extending the range of validity of parameter-space metrics for all-sky searches for gravitational-wave pulsars. Physical Review D, 2016, 94, .	4.7	19
27	Optimizing the choice of analysis method for all-sky searches for continuous gravitational waves with Einstein@Home. Physical Review D, 2019, 99, .	4.7	15
28	Deep exploration for continuous gravitational waves at 171–172ÂHz in LIGO second observing run data. Physical Review D, 2021, 103, .	4.7	15
29	Status of the Australian Consortium for Interferometric Gravitational Astronomy. Classical and Quantum Gravity, 2006, 23, S41-S49.	4.0	14
30	A Deep Pulse Search in 11 Low Mass X-Ray Binaries. Astrophysical Journal, 2018, 859, 112.	4.5	11
31	OctApps: a library of Octave functions for continuous gravitational-wave data analysis. Journal of Open Source Software, 2018, 3, 707.	4.6	11
32	Deep searches for X-ray pulsations from Scorpius X-1 and Cygnus X-2 in support of continuous gravitational wave searches. Monthly Notices of the Royal Astronomical Society, 2021, 509, 1745-1754.	4.4	7
33	Template lattices for a cross-correlation search for gravitational waves from Scorpius X-1. Classical and Quantum Gravity, 2022, 39, 075013.	4.0	6
34	Using generalized PowerFlux methods to estimate the parameters of periodic gravitational waves. Classical and Quantum Gravity, 2008, 25, 114044.	4.0	5
35	Gravitational waves: search results, data analysis and parameter estimation. General Relativity and Gravitation, 2015, 47, 11.	2.0	4
36	Geometric Approach to Analytic Marginalisation of the Likelihood Ratio for Continuous Gravitational Wave Searches. Universe, 2021, 7, 174.	2.5	4

3

#	Article	IF	CITATION
37	Graphics processing unit implementation of the F-statistic for continuous gravitational wave searches. Classical and Quantum Gravity, 2022, 39, 045003.	4.0	3
38	Reduced order modelling in searches for continuous gravitational waves – I. Barycentring time delays. Monthly Notices of the Royal Astronomical Society, 2018, 476, 4510-4519.	4.4	2
39	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. , 2018, 21, 1.		2
40	Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. , 2016, 19, 1.		1