Benedetta Mennucci

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4499391/publications.pdf

Version: 2024-02-01

330 papers 51,260 citations

76 h-index

9428

221 g-index

343 all docs 343 docs citations

times ranked

343

36042 citing authors

#	Article	IF	CITATIONS
1	Multiscale strategies for describing environment effects: From solvents to biomatrices. , 2022, , 263-279.		O
2	Unravelling the ultrafast dynamics of a N-BODIPY compound. Dyes and Pigments, 2022, 200, 110181.	2.0	2
3	Probing aqueous ions with non-local Auger relaxation. Physical Chemistry Chemical Physics, 2022, 24, 8661-8671.	1.3	4
4	Structure of the stress-related LHCSR1 complex determined by an integrated computational strategy. Communications Biology, 2022, 5, 145.	2.0	8
5	The atomistic modeling of light-harvesting complexes from the physical models to the computational protocol. Journal of Chemical Physics, 2022, 156, 120901.	1.2	21
6	A fast method for electronic couplings in embedded multichromophoric systems. Journal of Physics Condensed Matter, 2022, 34, 304004.	0.7	7
7	Uncovering the interactions driving carotenoid binding in light-harvesting complexes. Chemical Science, 2021, 12, 5113-5122.	3.7	18
8	The structural changes in the signaling mechanism of bacteriophytochromes in solution revealed by a multiscale computational investigation. Chemical Science, 2021, 12, 5555-5565.	3.7	8
9	Computational Investigation of Structural and Spectroscopic Properties of LOV-Based Proteins with Improved Fluorescence. Journal of Physical Chemistry B, 2021, 125, 1768-1777.	1.2	6
10	Multiscale Models for Light-Driven Processes. Annual Review of Physical Chemistry, 2021, 72, 489-513.	4.8	29
11	An enhanced sampling QM/AMOEBA approach: The case of the excited state intramolecular proton transfer in solvated 3-hydroxyflavone. Journal of Chemical Physics, 2021, 154, 184107.	1.2	11
12	Excited States of Xanthophylls Revisited: Toward the Simulation of Biologically Relevant Systems. Journal of Physical Chemistry Letters, 2021, 12, 6604-6612.	2.1	13
13	Simple Protocol for Capturing Both Linear-Response and State-Specific Effects in Excited-State Calculations with Continuum Solvation Models. Journal of Chemical Theory and Computation, 2021, 17, 5155-5164.	2.3	36
14	Energy, Structures, and Response Properties with a Fully Coupled QM/AMOEBA/ddCOSMO Implementation. Journal of Chemical Theory and Computation, 2021, 17, 5661-5672.	2.3	8
15	Ultrafast Transient Infrared Spectroscopy of Photoreceptors with Polarizable QM/MM Dynamics. Journal of Physical Chemistry B, 2021, 125, 10282-10292.	1.2	9
16	From crystallographic data to the solution structure of photoreceptors: the case of the AppA BLUF domain. Chemical Science, 2021, 12, 13331-13342.	3.7	9
17	Hybrid QM/classical models: Methodological advances and new applications. Chemical Physics Reviews, 2021, 2, .	2.6	26
18	A different perspective for nonphotochemical quenching in plant antenna complexes. Nature Communications, 2021, 12, 7152.	5.8	22

#	Article	IF	CITATIONS
19	Successes & Succes	0.5	28
20	The Multiple Roles of the Protein in the Photoactivation of Orange Carotenoid Protein. CheM, 2020, 6, 187-203.	5.8	39
21	Electronic couplings for photo-induced processes from subsystem time-dependent density-functional theory: The role of the diabatization. Journal of Chemical Physics, 2020, 153, 184113.	1.2	12
22	Excited state Born–Oppenheimer molecular dynamics through coupling between time dependent DFT and AMOEBA. Physical Chemistry Chemical Physics, 2020, 22, 19532-19541.	1.3	19
23	The energy transfer model of nonphotochemical quenching: Lessons from the minor CP29 antenna complex of plants. Biochimica Et Biophysica Acta - Bioenergetics, 2020, 1861, 148282.	0.5	23
24	Dye Stabilization and Wavelength Tunability in Lasing Fibers Based on DNA. Advanced Optical Materials, 2020, 8, 2001039.	3.6	11
25	Molecular Mechanisms of Activation in the Orange Carotenoid Protein Revealed by Molecular Dynamics. Journal of the American Chemical Society, 2020, 142, 21829-21841.	6.6	18
26	A polarisable QM/MM description of NMR chemical shifts of a photoreceptor protein. Molecular Physics, 2020, 118, e1771449.	0.8	9
27	Polarizable embedding QM/MM: the future gold standard for complex (bio)systems?. Physical Chemistry Chemical Physics, 2020, 22, 14433-14448.	1.3	109
28	Elucidating the role of structural fluctuations, and intermolecular and vibronic interactions in the spectroscopic response of a bacteriophytochrome. Physical Chemistry Chemical Physics, 2020, 22, 8585-8594.	1.3	15
29	Exciton properties and optical spectra of light harvesting complex II from a fully atomistic description. Physical Chemistry Chemical Physics, 2020, 22, 16783-16795.	1.3	27
30	Charge transfer from the carotenoid can quench chlorophyll excitation in antenna complexes of plants. Nature Communications, 2020, 11 , 662 .	5.8	81
31	The key to the yellow-to-cyan tuning in the green fluorescent protein family is polarisation. Physical Chemistry Chemical Physics, 2019, 21, 18988-18998.	1.3	21
32	The <i>JPC</i> Periodic Table. Journal of Physical Chemistry A, 2019, 123, 5837-5848.	1.1	2
33	The <i>JPC</i> Periodic Table. Journal of Physical Chemistry B, 2019, 123, 5973-5984.	1.2	1
34	The <i>JPC</i> Periodic Table. Journal of Physical Chemistry C, 2019, 123, 17063-17074.	1.5	1
35	The <i>JPC</i> Periodic Table. Journal of Physical Chemistry Letters, 2019, 10, 4051-4062.	2.1	2
36	Coupled Cluster Theory with Induced Dipole Polarizable Embedding for Ground and Excited States. Journal of Chemical Theory and Computation, 2019, 15, 4485-4496.	2.3	13

#	Article	IF	Citations
37	Quantum Chemical Modeling of the Photoinduced Activity of Multichromophoric Biosystems. Chemical Reviews, 2019, 119, 9361-9380.	23.0	73
38	Auramine O interaction with DNA: a combined spectroscopic and TD-DFT analysis. Physical Chemistry Chemical Physics, 2019, 21, 20606-20612.	1.3	11
39	Photoinduced electron transfer in 5-bromouracil labeled DNA. A contrathermodynamic mechanism revisited by electron transfer theories. Physical Chemistry Chemical Physics, 2019, 21, 4387-4393.	1.3	9
40	Time-Dependent Complete Active Space Embedded in a Polarizable Force Field. Journal of Chemical Theory and Computation, 2019, 15, 1633-1641.	2.3	16
41	Binding of model polycyclic aromatic hydrocarbons and carbamate-pesticides to DNA, BSA, micelles and liposomes. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 223, 117313.	2.0	17
42	Towards large scale hybrid QM/MM dynamics of complex systems with advanced point dipole polarizable embeddings. Chemical Science, 2019, 10, 7200-7211.	3.7	45
43	Multiscale modelling of photoinduced processes in composite systems. Nature Reviews Chemistry, 2019, 3, 315-330.	13.8	78
44	Negative Solvatochromism in a <i>N</i> -Linked <i>p</i> -Pyridiniumcalix[4] arene Derivative. Organic Letters, 2019, 21, 2704-2707.	2.4	7
45	The molecular mechanisms of light adaption in light-harvesting complexes of purple bacteria revealed by a multiscale modeling. Chemical Science, 2019, 10, 9650-9662.	3.7	26
46	How to make continuum solvation incredibly fast in a few simple steps: A practical guide to the domain decomposition paradigm for the conductorâ€like screening model. International Journal of Quantum Chemistry, 2019, 119, e25669.	1.0	17
47	Electronic energy transfer in biomacromolecules. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2019, 9, e1392.	6.2	30
48	A Synthetic Oxygen Sensor for Plants Based on Animal Hypoxia Signaling. Plant Physiology, 2019, 179, 986-1000.	2.3	26
49	Critical assessment of solvent effects on absorption and fluorescence of 3HF in acetonitrile in the QM/PCM framework: A synergic computational and experimental study. Journal of Molecular Structure, 2019, 1182, 283-291.	1.8	10
50	Nonequilibrium Environment Dynamics in a Frequency-Dependent Polarizable Embedding Model. Journal of Chemical Theory and Computation, 2019, 15, 43-51.	2.3	24
51	The modeling of the absorption lineshape for embedded molecules through a polarizable QM/MM approach. Photochemical and Photobiological Sciences, 2018, 17, 552-560.	1.6	38
52	Atomic Detail of Protein Folding Revealed by an Ab Initio Reappraisal of Circular Dichroism. Journal of the American Chemical Society, 2018, 140, 3674-3682.	6.6	36
53	The role of charge-transfer states in the spectral tuning of antenna complexes of purple bacteria. Photosynthesis Research, 2018, 137, 215-226.	1.6	59
54	The Dynamic Origin of Color Tuning in Proteins Revealed by a Carotenoid Pigment. Journal of Physical Chemistry Letters, 2018, 9, 2404-2410.	2.1	26

#	Article	IF	CITATIONS
55	Frenkelâ€exciton decomposition analysis of circular dichroism and circularly polarized luminescence for multichromophoric systems. Journal of Computational Chemistry, 2018, 39, 931-935.	1.5	9
56	Density-Dependent Formulation of Dispersion–Repulsion Interactions in Hybrid Multiscale Quantum/Molecular Mechanics (QM/MM) Models. Journal of Chemical Theory and Computation, 2018, 14, 1671-1681.	2.3	24
57	Excited State Dipole Moments in Solution: Comparison between State-Specific and Linear-Response TD-DFT Values. Journal of Chemical Theory and Computation, 2018, 14, 1544-1553.	2.3	33
58	Electron and excitation energy transfers in covalently linked donor–acceptor dyads: mechanisms and dynamics revealed using quantum chemistry. Physical Chemistry Chemical Physics, 2018, 20, 395-403.	1.3	10
59	Polarizable QM/Classical Approaches for the Modeling of Solvation Effects on UV–Vis and Fluorescence Spectra: An Integrated Strategy. Journal of Physical Chemistry A, 2018, 122, 390-397.	1.1	20
60	Modelling excitation energy transfer in covalently linked molecular dyads containing a BODIPY unit and a macrocycle. Physical Chemistry Chemical Physics, 2018, 20, 1993-2008.	1.3	12
61	EXAT: EXcitonic analysis tool. Journal of Computational Chemistry, 2018, 39, 279-286.	1.5	37
62	Coupling to Charge Transfer States is the Key to Modulate the Optical Bands for Efficient Light Harvesting in Purple Bacteria. Journal of Physical Chemistry Letters, 2018, 9, 6892-6899.	2.1	55
63	Surface Hopping within an Exciton Picture. An Electrostatic Embedding Scheme. Journal of Chemical Theory and Computation, 2018, 14, 6139-6148.	2.3	29
64	Coherence in carotenoid-to-chlorophyll energy transfer. Nature Communications, 2018, 9, 3160.	5.8	46
65	Understanding the influence of disorder on the exciton dynamics and energy transfer in Zn-phthalocyanine H-aggregates. Physical Chemistry Chemical Physics, 2018, 20, 22331-22341.	1.3	9
66	Delocalized excitons in natural light-harvesting complexes. Reviews of Modern Physics, 2018, 90, .	16.4	150
67	A polarizable QM/MM description of environment effects on NMR shieldings: from solvated molecules to pigment–protein complexes. Theoretical Chemistry Accounts, 2018, 137, 1.	0.5	8
68	Shaping excitons in light-harvesting proteins through nanoplasmonics. Chemical Science, 2018, 9, 6219-6227.	3.7	9
69	Quantum Chemical Studies of Light Harvesting. Chemical Reviews, 2017, 117, 294-343.	23.0	262
70	Fluorescent dyes in the context of DNAâ€binding: The case of Thioflavin T. International Journal of Quantum Chemistry, 2017, 117, e25349.	1.0	13
71	Modeling excitation energy transfer in multi-BODIPY architectures. Physical Chemistry Chemical Physics, 2017, 19, 6443-6453.	1.3	16
72	Impact of Electronic Fluctuations and Their Description on the Exciton Dynamics in the Light-Harvesting Complex PE545. Journal of Physical Chemistry B, 2017, 121, 1330-1339.	1.2	26

#	Article	IF	Citations
73	Excited state characterization of carbonyl containing carotenoids: a comparison between single and multireference descriptions. Physical Chemistry Chemical Physics, 2017, 19, 17156-17166.	1.3	15
74	A Quantum Chemical Interpretation of Two-Dimensional Electronic Spectroscopy of Light-Harvesting Complexes. Journal of the American Chemical Society, 2017, 139, 7558-7567.	6.6	71
75	Excited state gradients for a state-specific continuum solvation approach: The vertical excitation model within a Lagrangian TDDFT formulation. Journal of Chemical Physics, 2017, 146, 204106.	1.2	26
76	A quantum chemical investigation of the solvatochromism of a phthalocyanine within a lipid bilayer: Comparison between continuum and atomistic models. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 344, 42-48.	2.0	4
77	The JPCL New Year's Editorial. Journal of Physical Chemistry Letters, 2017, 8, 41-41.	2.1	0
78	Is energy transfer limiting multiphotochromism? answers from ab initio quantifications. Physical Chemistry Chemical Physics, 2017, 19, 2044-2052.	1.3	11
79	Fine control of chlorophyll-carotenoid interactions defines the functionality of light-harvesting proteins in plants. Scientific Reports, 2017, 7, 13956.	1.6	57
80	Exciton transport in the PE545 complex: insight from atomistic QM/MM-based quantum master equations and elastic network models. Physical Biology, 2017, 14, 066001.	0.8	4
81	Coupling Real-Time Time-Dependent Density Functional Theory with Polarizable Force Field. Journal of Physical Chemistry Letters, 2017, 8, 5283-5289.	2.1	25
82	Solvatation als Ursache für die unerwartete Nucleophilieâ€Reihung von Peroxidâ€Anionen. Angewandte Chemie, 2017, 129, 13463-13467.	1.6	6
83	Classical Force Fields Tailored for QM Applications: Is It Really a Feasible Strategy?. Journal of Chemical Theory and Computation, 2017, 13, 4636-4648.	2.3	45
84	Hybrid QM/MM Molecular Dynamics with AMOEBA Polarizable Embedding. Journal of Chemical Theory and Computation, 2017, 13, 4025-4033.	2.3	81
85	Solvation Accounts for the Counterintuitive Nucleophilicity Ordering of Peroxide Anions. Angewandte Chemie - International Edition, 2017, 56, 13279-13282.	7.2	20
86	In the Limelight. Journal of Physical Chemistry Letters, 2017, 8, 3718-3719.	2.1	0
87	Excited-State Gradients in Polarizable QM/MM Models: An Induced Dipole Formulation. Journal of Chemical Theory and Computation, 2017, 13, 3778-3786.	2.3	23
88	Noncovalent Interactions and Environment Effects. , 2017, , 365-385.		1
89	Combining classical molecular dynamics and quantum mechanical methods for the description of electronic excitations: The case of carotenoids. Journal of Computational Chemistry, 2016, 37, 981-991.	1.5	40
90	Efficient Photoinduced Charge Separation in a BODIPY–C ₆₀ Dyad. Journal of Physical Chemistry C, 2016, 120, 16526-16536.	1.5	25

#	Article	IF	Citations
91	Perspective: Polarizable continuum models for quantum-mechanical descriptions. Journal of Chemical Physics, 2016, 144, 160901.	1.2	81
92	Control of Coherences and Optical Responses of Pigment–Protein Complexes by Plasmonic Nanoantennae. Journal of Physical Chemistry Letters, 2016, 7, 2189-2196.	2.1	14
93	Photoprotection and triplet energy transfer in higher plants: the role of electronic and nuclear fluctuations. Physical Chemistry Chemical Physics, 2016, 18, 11288-11296.	1.3	21
94	Simulation of Electronic Circular Dichroism of Nucleic Acids: From the Structure to the Spectrum. Chemistry - A European Journal, 2016, 22, 17011-17019.	1.7	28
95	Theoretical Quantification of the Modified Photoactivity of Photochromes Grafted on Metallic Nanoparticles. Journal of Physical Chemistry C, 2016, 120, 21827-21836.	1.5	6
96	Excited-State Decay Pathways of Molecular Rotors: Twisted Intermediate or Conical Intersection?. Journal of Physical Chemistry Letters, 2016, 7, 4285-4290.	2.1	28
97	Electrostatic versus Resonance Interactions in Photoreceptor Proteins: The Case of Rhodopsin. Journal of Physical Chemistry Letters, 2016, 7, 4547-4553.	2.1	25
98	An <i>Ab Initio</i> Description of the Excitonic Properties of LH2 and Their Temperature Dependence. Journal of Physical Chemistry B, 2016, 120, 11348-11359.	1.2	64
99	A QM/MM Approach Using the AMOEBA Polarizable Embedding: From Ground State Energies to Electronic Excitations. Journal of Chemical Theory and Computation, 2016, 12, 3654-3661.	2.3	136
100	Introducing QMC/MMpol: Quantum Monte Carlo in Polarizable Force Fields for Excited States. Journal of Chemical Theory and Computation, 2016, 12, 1674-1683.	2.3	28
101	Reaching Out with Physical Chemistry. Journal of Physical Chemistry Letters, 2016, 7, 103-104.	2.1	1
102	A fast but accurate excitonic simulation of the electronic circular dichroism of nucleic acids: how can it be achieved?. Physical Chemistry Chemical Physics, 2016, 18, 866-877.	1.3	24
103	Modeling absorption and fluorescence solvatochromism with <scp>QM</scp> /Classical approaches. International Journal of Quantum Chemistry, 2015, 115, 1202-1208.	1.0	36
104	FemExâ€"female excellence in theoretical and computational chemistry. International Journal of Quantum Chemistry, 2015, 115, 1195-1196.	1.0	3
105	A Prolific First Five Years. Journal of Physical Chemistry Letters, 2015, 6, 180-182.	2.1	0
106	Carotenoids and Light-Harvesting: From DFT/MRCI to the Tamm–Dancoff Approximation. Journal of Chemical Theory and Computation, 2015, 11, 655-666.	2.3	44
107	Polarizable Molecular Dynamics in a Polarizable Continuum Solvent. Journal of Chemical Theory and Computation, 2015, 11, 623-634.	2.3	45
108	Plasmon Enhanced Light Harvesting: Multiscale Modeling of the FMO Protein Coupled with Gold Nanoparticles. Journal of Physical Chemistry A, 2015, 119, 5197-5206.	1.1	18

#	Article	IF	CITATIONS
109	Excited-State Vibrations of Solvated Molecules: Going Beyond the Linear-Response Polarizable Continuum Model. Journal of Chemical Theory and Computation, 2015, 11, 847-850.	2.3	18
110	The role of magnetic–electric coupling in exciton-coupled ECD spectra: the case of bis-phenanthrenes. Chemical Communications, 2015, 51, 10498-10501.	2.2	32
111	Towards an ab initio description of the optical spectra of light-harvesting antennae: application to the CP29 complex of photosystem II. Physical Chemistry Chemical Physics, 2015, 17, 14405-14416.	1.3	47
112	Limits and potentials of quantum chemical methods in modelling photosynthetic antennae. Physical Chemistry Chemical Physics, 2015, 17, 30783-30792.	1.3	34
113	Polarizable QM/MM Multiconfiguration Self-Consistent Field Approach with State-Specific Corrections: Environment Effects on Cytosine Absorption Spectrum. Journal of Chemical Theory and Computation, 2015, 11, 1674-1682.	2.3	43
114	Electronic Excitations in Solution: The Interplay between State Specific Approaches and a Time-Dependent Density Functional Theory Description. Journal of Chemical Theory and Computation, 2015, 11, 5782-5790.	2.3	112
115	Electronic Couplings for Resonance Energy Transfer from CCSD Calculations: From Isolated to Solvated Systems. Journal of Chemical Theory and Computation, 2015, 11, 5219-5228.	2.3	12
116	Time-dependent non-equilibrium dielectric response in QM/continuum approaches. Journal of Chemical Physics, 2015, 142, 034120.	1.2	31
117	Chromophore–Protein Coupling beyond Nonpolarizable Models: Understanding Absorption in Green Fluorescent Protein. Journal of Chemical Theory and Computation, 2015, 11, 4825-4839.	2.3	65
118	Negative solvatochromism of push–pull biphenyl compounds: a theoretical study. Theoretical Chemistry Accounts, 2015, 134, 1.	0.5	6
119	Electronic Excitations in Nonpolar Solvents: Can the Polarizable Continuum Model Accurately Reproduce Solvent Effects?. Journal of Physical Chemistry B, 2015, 119, 8984-8991.	1.2	23
120	QM/MM Approaches for the Modeling of Photoinduced Processes in Biological Systems. Challenges and Advances in Computational Chemistry and Physics, 2015, , 325-342.	0.6	1
121	Liquid-Phase Simulation: Theory and Numerics of Hybrid Quantum-Mechanical/Classical Approaches. , 2015, , 811-817.		0
122	Combined Experimental and Theoretical Study of Efficient and Ultrafast Energy Transfer in a Molecular Dyad. Journal of Physical Chemistry C, 2014, 118, 23476-23486.	1.5	29
123	Geometry Optimization in Polarizable QM/MM Models: The Induced Dipole Formulation. Journal of Chemical Theory and Computation, 2014, 10, 1588-1598.	2.3	52
124	Excited-State Geometries of Solvated Molecules: Going Beyond the Linear-Response Polarizable Continuum Model. Journal of Chemical Theory and Computation, 2014, 10, 1848-1851.	2.3	29
125	Freezing of Molecular Motions Probed by Cryogenic Magic Angle Spinning NMR. Journal of Physical Chemistry Letters, 2014, 5, 512-516.	2.1	15
126	Optical Signatures of OBO Fluorophores: A Theoretical Analysis. Journal of Chemical Theory and Computation, 2014, 10, 805-815.	2.3	52

#	Article	IF	Citations
127	Full cLR-PCM calculations of the solvatochromic effects on emission energies. Physical Chemistry Chemical Physics, 2014, 16, 26024-26029.	1.3	13
128	A TDDFT/MMPol/PCM model for the simulation of exciton-coupled circular dichroism spectra. Physical Chemistry Chemical Physics, 2014, 16, 16407-16418.	1.3	45
129	Molecular basis of the exciton–phonon interactions in the PE545 light-harvesting complex. Physical Chemistry Chemical Physics, 2014, 16, 16302-16311.	1.3	43
130	Unveiling Solvents Effect on Excited-State Polarizabilities with the Corrected Linear-Response Model. Journal of Physical Chemistry A, 2014, 118, 5652-5656.	1.1	12
131	Excitation Energy Transfer in Donor-Bridge-Acceptor Systems: A Combined Quantum-Mechanical/Classical Analysis of the Role of the Bridge and the Solvent. Journal of Physical Chemistry A, 2014, 118, 6484-6491.	1.1	17
132	Solvation at Surfaces and Interfaces: A Quantum-Mechanical/Continuum Approach Including Nonelectrostatic Contributions. Journal of Physical Chemistry C, 2014, 118, 4715-4725.	1.5	20
133	Solvent Effects on Cyanine Derivatives: A PCM Investigation. Journal of Physical Chemistry A, 2014, 118, 5343-5348.	1.1	29
134	A Theoretical and Experimental Investigation of the Spectroscopic Properties of a DNAâ€Intercalator Salphenâ€Type Zn ^{II} Complex. Chemistry - A European Journal, 2014, 20, 7439-7447.	1.7	23
135	The Fenna–Matthews–Olson Protein Revisited: A Fully Polarizable (TD)DFT/MM Description. ChemPhysChem, 2014, 15, 3194-3204.	1.0	65
136	Orientational Order of Two Fluoro- and Isothiocyanate-Substituted Nematogens by Combination of ¹³ C NMR Spectroscopy and DFT Calculations. Journal of Physical Chemistry B, 2014, 118, 3469-3477.	1.2	2
137	Quantum Calculations in Solution for Large to Very Large Molecules: A New Linear Scaling QM/Continuum Approach. Journal of Physical Chemistry Letters, 2014, 5, 953-958.	2.1	32
138	Quantum, classical, and hybrid QM/MM calculations in solution: General implementation of the ddCOSMO linear scaling strategy. Journal of Chemical Physics, 2014, 141, 184108.	1.2	47
139	Plasmon-Controlled Light-Harvesting: Design Rules for Biohybrid Devices via Multiscale Modeling. Nano Letters, 2013, 13, 4475-4484.	4.5	35
140	Conformational Analysis of Gly–Ala–NHMe in D ₂ O and DMSO Solutions: A Two-Dimensional Infrared Spectroscopy Study. Journal of Physical Chemistry B, 2013, 117, 14226-14237.	1.2	9
141	On the Photophysics of Carotenoids: A Multireference DFT Study of Peridinin. Journal of Physical Chemistry B, 2013, 117, 13808-13815.	1.2	48
142	Toward Reliable Prediction of the Energy Ladder in Multichromophoric Systems: A Benchmark Study on the FMO Light-Harvesting Complex. Journal of Chemical Theory and Computation, 2013, 9, 4928-4938.	2.3	52
143	Can we control the electronic energy transfer in molecular dyads through metal nanoparticles? A QM/continuum investigation. Physical Chemistry Chemical Physics, 2013, 15, 3294.	1.3	18
144	Modeling environment effects on spectroscopies through QM/classical models. Physical Chemistry Chemical Physics, 2013, 15, 6583.	1.3	96

#	Article	IF	Citations
145	Spatial and Electronic Correlations in the PE545 Light-Harvesting Complex. Journal of Physical Chemistry Letters, 2013, 4, 372-377.	2.1	24
146	Modeling Fluorescence Observables, Particularly for FRET Experiments, using Markov Chain Analysis of Molecular Dynamics and Quantum Mechanics Simulations. Biophysical Journal, 2013, 104, 683a.	0.2	0
147	An investigation of the photophysical properties of minor groove bound and intercalated DAPI through quantum-mechanical and spectroscopic tools. Physical Chemistry Chemical Physics, 2013, 15, 4596.	1.3	44
148	Benchmarking Time-Dependent Density Functional Theory for Excited State Geometries of Organic Molecules in Gas-Phase and in Solution. Journal of Chemical Theory and Computation, 2013, 9, 2209-2220.	2.3	123
149	Choosing a Functional for Computing Absorption and Fluorescence Band Shapes with TD-DFT. Journal of Chemical Theory and Computation, 2013, 9, 2749-2760.	2.3	243
150	Energy Flow in the Cryptophyte PE545 Antenna Is Directed by Bilin Pigment Conformation. Journal of Physical Chemistry B, 2013, 117, 4263-4273.	1.2	49
151	Dissecting the Nature of Exciton Interactions in Ethyne-Linked Tetraarylporphyrin Arrays. Journal of Physical Chemistry C, 2013, 117, 12423-12431.	1.5	6
152	On the Metric of Charge Transfer Molecular Excitations: A Simple Chemical Descriptor. Journal of Chemical Theory and Computation, 2013, 9, 3118-3126.	2.3	335
153	Fast Domain Decomposition Algorithm for Continuum Solvation Models: Energy and First Derivatives. Journal of Chemical Theory and Computation, 2013, 9, 3637-3648.	2.3	81
154	Synthesis, Chiroptical Properties and Density Functional Theory Calculations of 3,3'â€Biphenylâ€2,2'â€BiTropone. Chirality, 2013, 25, 648-655.	1.3	1
155	Modelling vibrational coupling in DNA oligomers: a computational strategy combining QM and continuum solvation models. Highlights in Theoretical Chemistry, 2013, , 143-152.	0.0	0
156	Calculation and analysis of the harmonic vibrational frequencies in molecules at extreme pressure: Methodology and diborane as a test case. Journal of Chemical Physics, 2012, 137, 154112.	1.2	64
157	TD-DFT Assessment of Functionals for Optical 0–0 Transitions in Solvated Dyes. Journal of Chemical Theory and Computation, 2012, 8, 2359-2372.	2.3	403
158	Toward a Unified Modeling of Environment and Bridge-Mediated Contributions to Electronic Energy Transfer: A Fully Polarizable QM/MM/PCM Approach. Journal of Chemical Theory and Computation, 2012, 8, 4462-4473.	2.3	69
159	A Photosensitive Liquid Crystal Studied by ¹⁴ N NMR, ² H NMR, and DFT Calculations. ChemPhysChem, 2012, 13, 3958-3965.	1.0	11
160	A Strategy for the Study of the Interactions between Metal–Dyes and Proteins with QM/MM Approaches: the Case of Iron–Gall Dye. Journal of Physical Chemistry B, 2012, 116, 13344-13352.	1.2	3
161	Modeling Fluorescence Observables, Particularly for FRET Experiments, using Markov Chain Analysis of Molecular Dynamics and Quantum Mechanics Simulations. Biophysical Journal, 2012, 102, 597a.	0.2	0
162	Polarizable continuum model. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2012, 2, 386-404.	6.2	679

#	Article	IF	Citations
163	Modelling vibrational coupling in DNA oligomers: a computational strategy combining QM and continuum solvation models. Theoretical Chemistry Accounts, 2012, 131, 1.	0.5	13
164	Photosynthetic Light-Harvesting Is Tuned by the Heterogeneous Polarizable Environment of the Protein. Journal of the American Chemical Society, 2011, 133, 3078-3084.	6.6	123
165	Quantum mechanical study of the solvent-dependence of electronic energy transfer rates in a Bodipy closely-spaced dyad. Photochemical and Photobiological Sciences, 2011, 10, 1602-1609.	1.6	6
166	Determination of Order Parameters in Laterally Fluorosubstituted Terphenyls by ¹⁹ F-NMR, Optical and Dielectric Anisotropies. Molecular Crystals and Liquid Crystals, 2011, 541, 104/[342]-117/[355].	0.4	9
167	Polarity-Sensitive Fluorescent Probes in Lipid Bilayers: Bridging Spectroscopic Behavior and Microenvironment Properties. Journal of Physical Chemistry B, 2011, 115, 9980-9989.	1.2	52
168	¹³ C Chemical Shielding Tensors: A Combined Solid-State NMR and DFT Study of the Role of Small-Amplitude Motions. Journal of Physical Chemistry C, 2011, 115, 25023-25029.	1.5	19
169	Integrated NMR and Computational Study of Push–Pull NLO Probes: Interplay of Solvent and Structural Effects. Journal of Physical Chemistry A, 2011, 115, 10035-10044.	1.1	10
170	Nonsymmetric bent-core liquid crystals based on a 1,3,4-thiadiazole core unit and their nematic mesomorphism. Chemistry of Materials, 2011, 23, 2630-2636.	3.2	67
171	Thiazole orange (TO) as a light-switch probe: a combined quantum-mechanical and spectroscopic study. Physical Chemistry Chemical Physics, 2011, 13, 12595.	1.3	47
172	Self-Consistent Field and Polarizable Continuum Model: A New Strategy of Solution for the Coupled Equations. Journal of Chemical Theory and Computation, 2011, 7, 610-617.	2.3	31
173	Using Molecular Dynamics and Quantum Mechanics Calculations To Model Fluorescence Observables. Journal of Physical Chemistry A, 2011, 115, 3997-4008.	1.1	30
174	Surface-Enhanced Fluorescence within a Metal Nanoparticle Array: The Role of Solvent and Plasmon Couplings. Journal of Physical Chemistry C, 2011, 115, 5450-5460.	1.5	46
175	Practical computation of electronic excitation in solution: vertical excitation model. Chemical Science, 2011, 2, 2143.	3.7	202
176	Definition of the hydrogen bond (IUPAC Recommendations 2011). Pure and Applied Chemistry, 2011, 83, 1637-1641.	0.9	1,449
177	Defining the hydrogen bond: An account (IUPAC Technical Report). Pure and Applied Chemistry, 2011, 83, 1619-1636.	0.9	856
178	The role of the environment in electronic energy transfer: a molecular modeling perspective. Physical Chemistry Chemical Physics, 2011, 13, 11538.	1.3	53
179	Excited-state calculations with TD-DFT: from benchmarks to simulations in complex environments. Physical Chemistry Chemical Physics, 2011, 13, 16987.	1.3	301
180	Fluorescence and phosphorescence of acetone in neat liquid and aqueous solution studied by QM/MM and PCM approaches. International Journal of Quantum Chemistry, 2011, 111, 1511-1520.	1.0	17

#	Article	IF	CITATIONS
181	Cavity field effects within a polarizable continuum model of solvation: Application to the calculation of electronic circular dichroism spectra of $\langle i \rangle R \langle i \rangle \hat{a} \in (+) \hat{a} \in 3 \hat{a} \in \mathbb{R}$ methyl $\hat{a} \in \mathbb{C}$ yclopentanone. International Journal of Quantum Chemistry, 2011, 111, 826-838.	1.0	20
182	Modeling solvent effects on chiroptical properties. Chirality, 2011, 23, 717-729.	1.3	106
183	Solvent effects on the electronic absorption spectrum of camphor using continuum, discrete or explicit approaches. Chemical Physics Letters, 2010, 484, 185-191.	1.2	22
184	Electronic excitation energies in solution at equation of motion CCSD level within a state specific polarizable continuum model approach. Journal of Chemical Physics, 2010, 132, 084102.	1.2	47
185	Superexchange-mediated electronic energy transfer in a model dyad. Physical Chemistry Chemical Physics, 2010, 12, 7378.	1.3	32
186	What is Solvatochromism?. Journal of Physical Chemistry B, 2010, 114, 17128-17135.	1,2	389
187	Quantum Chemical Modeling of the Cardiolipin Headgroup. Journal of Physical Chemistry A, 2010, 114, 4375-4387.	1.1	21
188	Toward a General Formulation of Dispersion Effects for Solvation Continuum Models. Journal of Chemical Theory and Computation, 2010, 6, 3358-3364.	2.3	35
189	On the TD-DFT Accuracy in Determining Single and Double Bonds in Excited-State Structures of Organic Molecules. Journal of Physical Chemistry A, 2010, 114, 13402-13410.	1.1	76
190	A variational formulation of the polarizable continuum model. Journal of Chemical Physics, 2010, 133, 014106.	1,2	125
191	Modeling Hole Transport in Wet and Dry DNA. Journal of Physical Chemistry B, 2010, 114, 4416-4423.	1.2	11
192	Toward a Quantum-Mechanical Description of 2D-IR Spectra of Solvated Systems: The Vibrational Mode Coupling within A Polarizable Continuum Model. Journal of Physical Chemistry B, 2010, 114, 4924-4930.	1.2	7
193	A Subsystem TDDFT Approach for Solvent Screening Effects on Excitation Energy Transfer Couplings. Journal of Chemical Theory and Computation, 2010, 6, 1843-1851.	2.3	77
194	Theoretical Investigation of the Mechanism and Dynamics of Intramolecular Coherent Resonance Energy Transfer in Soft Molecules: A Case Study of Dithia-anthracenophane. Journal of the American Chemical Society, 2010, 132, 16911-16921.	6.6	24
195	Quantum Mechanical Approach to Solvent Effects on the Optical Properties of Metal Nanoparticles and Their Efficiency As Excitation Energy Transfer Acceptors. Journal of Physical Chemistry C, 2010, 114, 1553-1561.	1.5	16
196	Continuum Solvation Models: What Else Can We Learn from Them?. Journal of Physical Chemistry Letters, 2010, 1, 1666-1674.	2.1	134
197	Planar vs. twisted intramolecular charge transfer mechanism in Nile Red: new hints from theory. Physical Chemistry Chemical Physics, 2010, 12, 8016.	1.3	126
198	Which strategy for molecular probe design? An answer from the integration of spectroscopy and QM modeling. Physical Chemistry Chemical Physics, 2010, 12, 8999.	1.3	3

#	Article	IF	Citations
199	Probing the interactions between disulfide-based ligands and gold nanoparticles using a functionalised fluorescent perylene-monoimide dye. Photochemical and Photobiological Sciences, 2010, 9, 1042-1054.	1.6	39
200	A theoretical study of the copper(i)-catalyzed 1,3-dipolar cycloaddition reaction in dabco-based ionic liquids: the anion effect on regioselectivity. Physical Chemistry Chemical Physics, 2010, 12, 1958.	1.3	12
201	Structure versus Solvent Effects on Nonlinear Optical Properties of Pushâ^'Pull Systems: A Quantum-Mechanical Study Based on a Polarizable Continuum Model. Journal of Physical Chemistry A, 2009, 113, 14774-14784.	1.1	31
202	On the Performance of Continuum Solvation Methods. A Comment on $\hat{a} \in \omega$ Universal Approaches to Solvation Modeling $\hat{a} \in A$ ccounts of Chemical Research, 2009, 42, 489-492.	7.6	171
203	Electronic Energy Transfer in Condensed Phase Studied by a Polarizable QM/MM Model. Journal of Chemical Theory and Computation, 2009, 5, 1838-1848.	2.3	259
204	Nonplasmonic Metal Particles as Excitation Energy Transfer Acceptors: an Unexpected Efficiency Revealed by Quantum Mechanics. Journal of Physical Chemistry C, 2009, 113, 16364-16370.	1.5	21
205	Fretting about FRET: Failure of the Ideal Dipole Approximation. Biophysical Journal, 2009, 96, 4779-4788.	0.2	118
206	Fluorescence Enhancement of Chromophores Close to Metal Nanoparticles. Optimal Setup Revealed by the Polarizable Continuum Model. Journal of Physical Chemistry C, 2009, 113, 121-133.	1.5	141
207	Non covalent interactions in RNA and DNA base pairs: a quantum-mechanical study of the coupling between solvent and electronic density. Physical Chemistry Chemical Physics, 2009, 11, 11617.	1.3	27
208	Orientational Order of Fluorinated Mesogens Containing the 1,3,2-Dioxaborinane Ring: A Multidisciplinary Approach. Journal of Physical Chemistry B, 2009, 113, 15783-15794.	1.2	20
209	Structures and Properties of Electronically Excited Chromophores in Solution from the Polarizable Continuum Model Coupled to the Time-Dependent Density Functional Theory. Journal of Physical Chemistry A, 2009, 113, 3009-3020.	1.1	173
210	Towards the elaboration of a QM method to describe molecular solutes under the effect of a very high pressure. Chemical Physics, 2008, 344, 135-141.	0.9	59
211	Modulation of the Optical Response of Polyethylene Films Containing Luminescent Perylene Chromophores. Journal of Physical Chemistry B, 2008, 112, 3668-3679.	1.2	115
212	Does Förster Theory Predict the Rate of Electronic Energy Transfer for a Model Dyad at Low Temperature?. Journal of Physical Chemistry B, 2008, 112, 3759-3766.	1.2	65
213	How the Environment Controls Absorption and Fluorescence Spectra of PRODAN:  A Quantum-Mechanical Study in Homogeneous and Heterogeneous Media. Journal of Physical Chemistry B, 2008, 112, 414-423.	1.2	65
214	Response of Scalar Fields and Hydrogen Bonding to Excited-State Molecular Solvation of Carbonyl Compounds. Journal of Chemical Theory and Computation, 2008, 4, 578-585.	2.3	9
215	A Quantum Mechanical Strategy to Investigate the Structure of Liquids: The Cases of Acetonitrile, Formamide, and Their Mixture. Journal of Physical Chemistry B, 2008, 112, 6803-6813.	1.2	8
216	Modeling the Solvation of Peptides. The Case of (<i>></i>)- <i>N</i> -Acetylproline Amide in Liquid Water. Journal of Physical Chemistry B, 2008, 112, 3441-3450.	1.2	26

#	Article	IF	Citations
217	Structure and Properties of Molecular Solutes in Electronic Excited States: a Polarizable Continuum Model approach based on the Time-Dependent Density Functional Theory. Challenges and Advances in Computational Chemistry and Physics, 2008, , 179-208.	0.6	4
218	Quantum mechanical methods applied to excitation energy transfer: A comparative analysis on excitation energies and electronic couplings. Journal of Chemical Physics, 2008, 129, 034104.	1.2	54
219	Solvation Models for Molecular Properties: Continuum Versus Discrete Approaches. Challenges and Advances in Computational Chemistry and Physics, 2008, , 1-21.	0.6	3
220	Embedding effects on charge-transport parameters in molecular organic materials. Journal of Chemical Physics, 2007, 127, 144706.	1.2	11
221	How the Molecular Environment Controls Excitation Energy Transfer and Light Harvesting: a Quantum Mechanical Model. AIP Conference Proceedings, 2007, , .	0.3	1
222	The Optical Rotation of Glucose Prototypes:  A Local or a Global Property?. Journal of Chemical Theory and Computation, 2007, 3, 62-70.	2.3	9
223	Absolute Configuration of Natural Cyclohexene Oxides by Time Dependent Density Functional Theory Calculation of the Optical Rotation:  The Absolute Configuration of (â°')-Sphaeropsidone and (â°')-Episphaeropsidone Revised. Journal of Organic Chemistry, 2007, 72, 6680-6691.	1.7	36
224	How Solvent Controls Electronic Energy Transfer and Light Harvesting:  Toward a Quantum-Mechanical Description of Reaction Field and Screening Effects. Journal of Physical Chemistry B, 2007, 111, 13253-13265.	1.2	117
225	How to Model Solvent Effects on Molecular Properties Using Quantum Chemistry? Insights from Polarizable Discrete or Continuum Solvation Models. Journal of Physical Chemistry A, 2007, 111, 9890-9900.	1.1	62
226	Conformations of Banana-Shaped Molecules Studied by 2H NMR Spectroscopy in Liquid Crystalline Solvents. Journal of Physical Chemistry B, 2007, 111, 53-61.	1.2	9
227	Towards a Molecular Scale Interpretation of Excitation Energy Transfer in Solvated Bichromophoric Systems. II. The Through-Bond Contribution. Journal of Physical Chemistry B, 2007, 111, 853-863.	1.2	55
228	How Solvent Controls Electronic Energy Transfer and Light Harvesting. Journal of Physical Chemistry B, 2007, 111, 6978-6982.	1.2	167
229	Through-bond Versus Through-Space Contributions on Excitation Energy Transfer in Condensed Phase. AIP Conference Proceedings, 2007, , .	0.3	O
230	Ultrafast light harvesting dynamics in the cryptophyte phycocyanin 645. Photochemical and Photobiological Sciences, 2007, 6, 964-975.	1.6	62
231	A quantum mechanical polarizable continuum model for the calculation of resonance Raman spectra in condensed phase. Theoretical Chemistry Accounts, 2007, 117, 1029-1039.	0.5	46
232	Cationic dye dimers: a theoretical study. Theoretical Chemistry Accounts, 2007, 118, 305-314.	0.5	17
233	Formation and relaxation of excited states in solution: A new time dependent polarizable continuum model based on time dependent density functional theory. Journal of Chemical Physics, 2006, 124, 124520.	1.2	484
234	Geometries and properties of excited states in the gas phase and in solution: Theory and application of a time-dependent density functional theory polarizable continuum model. Journal of Chemical Physics, 2006, 124, 094107.	1.2	1,143

#	Article	IF	CITATIONS
235	Solvation of N3-at the Water Surface:Â The Polarizable Continuum Model Approach. Journal of Physical Chemistry B, 2006, 110, 11361-11368.	1.2	13
236	Electron Transfer in a Radical Ion Pair:Â Quantum Calculations of the Solvent Reorganization Energy. Journal of Physical Chemistry B, 2006, 110, 25115-25121.	1.2	13
237	Solvation of Coumarin 153 in Supercritical Fluoroform. Journal of Physical Chemistry B, 2006, 110, 4953-4962.	1.2	38
238	Time dependent solvation: a new frontier for quantum mechanical continuum models. Theoretical Chemistry Accounts, 2006, 116, 31-42.	0.5	28
239	DFT Calculation of Deuterium Quadrupolar Tensor in Crystal Anthracene. Theoretical Chemistry Accounts, 2006, 116, 711-717.	0.5	5
240	Dispersion and repulsion contributions to the solvation free energy: Comparison of quantum mechanical and classical approaches in the polarizable continuum model. Journal of Computational Chemistry, 2006, 27, 1769-1780.	1.5	49
241	Self-consistent quantum mechanical model for the description of excitation energy transfers in molecules at interfaces. Journal of Chemical Physics, 2006, 125, 054710.	1.2	14
242	Solvent polarity scales revisited: a ZINDO-PCM study of the solvatochromism of betaine-30. Molecular Physics, 2006, 104, 875-887.	0.8	43
243	The effects of solvation in the theoretical spectra of cationic dyes. Theoretical Chemistry Accounts, 2005, 113, 274-280.	0.5	74
244	Infrared linear dichroism in stretched films: Quantum mechanical approach within the polarizable continuum model. International Journal of Quantum Chemistry, 2005, 104, 716-726.	1.0	9
245	Quantum-mechanical studies of NMR properties of solutes in liquid crystals: A new strategy to determine orientational order parameters. Journal of Chemical Physics, 2005, 122, 064906.	1.2	10
246	Electronic excitation energies of molecules in solution within continuum solvation models: Investigating the discrepancy between state-specific and linear-response methods. Journal of Chemical Physics, 2005, 123, 134512.	1.2	187
247	Electronic excitation energies of molecules in solution: State specific and linear response methods for nonequilibrium continuum solvation models. Journal of Chemical Physics, 2005, 122, 104513.	1.2	271
248	A time-dependent polarizable continuum model: Theory and application. Journal of Chemical Physics, 2005, 122, 154501.	1.2	62
249	How to Model Solvation of Peptides? Insights from a Quantum-mechanical and Molecular Dynamics Study of N-Methylacetamide. 1. Geometries, Infrared, and Ultraviolet Spectra in Water. Journal of Physical Chemistry B, 2005, 109, 9818-9829.	1.2	91
250	Solvation Dynamics in Acetonitrile:Â A Study Incorporating Solute Electronic Response and Nuclear Relaxation. Journal of Physical Chemistry B, 2005, 109, 3553-3564.	1.2	58
251	Quantum Mechanical Polarizable Continuum Model Approach to the Kerr Effect of Pure Liquids. Journal of Physical Chemistry B, 2005, 109, 18706-18714.	1.2	29
252	How to Model Solvation of Peptides? Insights from a Quantum Mechanical and Molecular Dynamics Study of N-Methylacetamide. 2.15N and 17O Nuclear Shielding in Water and in Acetone. Journal of Physical Chemistry B, 2005, 109, 9830-9838.	1.2	38

#	Article	IF	Citations
253	Quantum Mechanical Continuum Solvation Models. Chemical Reviews, 2005, 105, 2999-3094.	23.0	14,149
254	Toward a Molecular Scale Interpretation of Excitation Energy Transfer in Solvated Bichromophoric Systems. Journal of the American Chemical Society, 2005, 127, 16733-16744.	6.6	85
255	Environmental Effects on the Spectroscopic Properties of Gallic Acid:  A Combined Classical and Quantum Mechanical Study. Journal of Physical Chemistry A, 2005, 109, 1933-1943.	1.1	71
256	Excitation energy transfer (EET) between molecules in condensed matter: A novel application of the polarizable continuum model (PCM). Journal of Chemical Physics, 2004, 120, 7029-7040.	1.2	184
257	Excitonic splitting in conjugated molecular materials: A quantum mechanical model including interchain interactions and dielectric effects. Physical Review B, 2004, 70, .	1.1	10
258	Radiative and nonradiative decay rates of a molecule close to a metal particle of complex shape. Journal of Chemical Physics, 2004, 121, 10190-10202.	1.2	77
259	Quantum-Mechanical Continuum Solvation Study of the Polarizability of Halides at the Water/Air Interface. Journal of Physical Chemistry B, 2004, 108, 13796-13806.	1.2	37
260	Predicting infinite dilution activity coefficients with the group contribution solvation model: an extension of its applicability to aqueous systems. Fluid Phase Equilibria, 2004, 221, 127-137.	1.4	10
261	Theoretical study of the SN2 reaction of Clâ^'(H2O)+CH3Cl using our own N-layered integrated molecular orbital and molecular mechanics polarizable continuum model method (ONIOM, PCM). Theoretical Chemistry Accounts, 2004, 111, 154-161.	0.5	44
262	Second-order MÃ, Ã,ller–Plesset second derivatives for the polarizable continuum model: theoretical bases and application to solvent effects in electrophilic bromination of ethylene. Theoretical Chemistry Accounts, 2004, 111, 66-77.	0.5	13
263	Density Functional Study of the Optical Rotation of Glucose in Aqueous Solution. Journal of Organic Chemistry, 2004, 69, 8161-8164.	1.7	55
264	Ab Initio Calculations of 170 NMR-Chemical Shifts for Water. The Limits of PCM Theory and the Role of Hydrogen-Bond Geometry and Cooperativity. Journal of Physical Chemistry A, 2004, 108, 5851-5863.	1.1	70
265	Solvent Effects on the Electronic Spectra:Â An Extension of the Polarizable Continuum Model to the ZINDO Method. Journal of Physical Chemistry A, 2004, 108, 6248-6256.	1.1	55
266	Calculation of nonlinear optical susceptibilities of pure liquids within the Polarizable Continuum Model: the effect of the macroscopic nonlinear polarization at the output frequency. Computational and Theoretical Chemistry, 2003, 633, 209-216.	1.5	11
267	Quantum mechanical calculations coupled with a dynamical continuum model for the description of dielectric relaxation: Time dependent Stokes shift of coumarin C153 in polar solvents. Journal of Molecular Liquids, 2003, 108, 21-46.	2.3	34
268	Ab initio model to predict NMR shielding tensors for solutes in liquid crystals. International Journal of Quantum Chemistry, 2003, 93, 121-130.	1.0	20
269	Combining Microsolvation and Polarizable Continuum Studies:  New Insights in the Rotation Mechanism of Amides in Water. Journal of Physical Chemistry A, 2003, 107, 6630-6637.	1.1	27
270	Solvent Effects on the Indirect Spin–Spin Coupling Constants of Benzene: The DFT-PCM Approach. International Journal of Molecular Sciences, 2003, 4, 119-134.	1.8	68

#	Article	IF	CITATIONS
271	The Cotton–Mouton effect of furan and its homologues in the gas phase, for the pure liquids and in solution. Journal of Chemical Physics, 2003, 118, 10712-10724.	1.2	37
272	Multiconfigurational self-consistent field linear response for the polarizable continuum model: Theory and application to ground and excited-state polarizabilities of para-nitroaniline in solution. Journal of Chemical Physics, 2003, 119, 5818-5827.	1.2	113
273	Analysis of the Opposite Solvent Effects Caused by Different Solute Cavities on the Metalâ^'Water Distance of Monoatomic Cation Hydrates. Journal of Physical Chemistry B, 2002, 106, 1118-1123.	1.2	42
274	Vibrational Circular Dichroism within the Polarizable Continuum Model:Â A Theoretical Evidence of Conformation Effects and Hydrogen Bonding for (S)-(â°')-3-Butyn-2-ol in CCl4Solution. Journal of Physical Chemistry A, 2002, 106, 12331-12339.	1.1	83
275	Hydrogen Bond versus Polar Effects: An Ab Initio Analysis on n → π* Absorption Spectra and N Nuclear Shieldings of Diazines in Solution. Journal of the American Chemical Society, 2002, 124, 1506-1515.	6.6	98
276	Polarizable Continuum Model (PCM) Calculations of Solvent Effects on Optical Rotations of Chiral Molecules. Journal of Physical Chemistry A, 2002, 106, 6102-6113.	1.1	607
277	An integrated effective fragmentâ€"polarizable continuum approach to solvation: Theory and application to glycine. Journal of Chemical Physics, 2002, 116, 5023.	1.2	120
278	Molecular properties in solution described with a continuum solvation model. Physical Chemistry Chemical Physics, 2002, 4, 5697-5712.	1.3	277
279	A second-order, quadratically convergent multiconfigurational self-consistent field polarizable continuum model for equilibrium and nonequilibrium solvation. Journal of Chemical Physics, 2002, 117, 13-26.	1.2	71
280	Solvent Effects on Nuclear Shieldings:Â Continuum or Discrete Solvation Models To Treat Hydrogen Bond and Polarity Effects?. Journal of Physical Chemistry A, 2001, 105, 7287-7296.	1.1	112
281	Theoretical Study of the Photophysics of Adenine in Solution:Â Tautomerism, Deactivation Mechanisms, and Comparison with the 2-Aminopurine Fluorescent Isomer. Journal of Physical Chemistry A, 2001, 105, 4749-4757.	1.1	123
282	The ONIOM-PCM method: Combining the hybrid molecular orbital method and the polarizable continuum model for solvation. Application to the geometry and properties of a merocyanine in solution. Journal of Chemical Physics, 2001, 115, 62-72.	1.2	189
283	Theoretical Study of Guanine from Gas Phase to Aqueous Solution:  Role of Tautomerism and Its Implications in Absorption and Emission Spectra. Journal of Physical Chemistry A, 2001, 105, 7126-7134.	1.1	82
284	The Cotton–Mouton effect of gaseous N2, CO, CO2, N2O, OCS and CS2: a density functional approach to high-order mixed electric and magnetic properties. Chemical Physics Letters, 2001, 346, 251-258.	1.2	16
285	Comment on "Reaction field treatment of charge penetration―[J. Chem. Phys. 112, 5558 (2000)]. Journal of Chemical Physics, 2001, 114, 4744.	1.2	153
286	The escaped charge problem in solvation continuum models. Journal of Chemical Physics, 2001, 115, 6130-6135.	1.2	43
287	Prediction of optical rotation using density functional theory: 6,8-dioxabicyclo[3.2.1]octanes. Tetrahedron: Asymmetry, 2000, 11, 2443-2448.	1.8	94
288	Glycine and alanine: a theoretical study of solvent effects upon energetics and molecular response properties. Computational and Theoretical Chemistry, 2000, 500, 113-127.	1.5	92

#	Article	IF	Citations
289	Nonequilibrium formulation of infrared frequencies and intensities in solution: Analytical evaluation within the polarizable continuum model. Journal of Chemical Physics, 2000, 113, 11270-11279.	1.2	69
290	Refinements on solvation continuum models: Hydrogen-bond effects on the OH stretch in liquid water and methanol. Journal of Chemical Physics, 2000, 112, 5382-5392.	1.2	44
291	An Attempt To Bridge the Gap between Computation and Experiment for Nonlinear Optical Properties:Â Macroscopic Susceptibilities in Solutionâ€. Journal of Physical Chemistry A, 2000, 104, 4690-4698.	1.1	118
292	Ab Initio Study of the Electronic Excited States in 4-(N,N-Dimethylamino)benzonitrile with Inclusion of Solvent Effects:Â The Internal Charge Transfer Process. Journal of the American Chemical Society, 2000, 122, 10621-10630.	6.6	93
293	Fast Evaluation of Geometries and Properties of Excited Molecules in Solution:Â A Tamm-Dancoff Model with Application to 4-Dimethylaminobenzonitrile. Journal of Physical Chemistry A, 2000, 104, 5631-5637.	1.1	541
294	MCSCF Study of Chemical Reactions in Solution within the Polarizable Continuum Model and VB Analysis of the Reaction Mechanism. , 2000, , 213-231.		0
295	Linear response theory for the polarizable continuum model. Journal of Chemical Physics, 1999, 110, 9877-9886.	1.2	313
296	Nuclear magnetic shieldings in solution: Gauge invariant atomic orbital calculation using the polarizable continuum model. Journal of Chemical Physics, 1999, 110, 7627-7638.	1.2	106
297	Multireference perturbation configuration interaction methods for solvated systems described within the polarizable continuum model. Journal of Chemical Physics, 1999, 111, 7197-7208.	1.2	12
298	Analytical free energy second derivatives with respect to nuclear coordinates: Complete formulation for electrostatic continuum solvation models. Journal of Chemical Physics, 1999, 110, 6858-6870.	1.2	115
299	The IEF version of the PCM solvation method: an overview of a new method addressed to study molecular solutes at the QM ab initio level. Computational and Theoretical Chemistry, 1999, 464, 211-226.	1.5	2,157
300	Theoretical modeling of the symmetric (C2v) electrophilic attachment of chlorine to ethylene in aqueous solution. International Journal of Quantum Chemistry, 1999, 74, 59-67.	1.0	6
301	Medium effects on the properties of chemical systems: An overview of recent formulations in the polarizable continuum model (PCM). International Journal of Quantum Chemistry, 1999, 75, 783-803.	1.0	108
302	Second-Order Møllerâ^'Plesset Analytical Derivatives for the Polarizable Continuum Model Using the Relaxed Density Approach. Journal of Physical Chemistry A, 1999, 103, 9100-9108.	1.1	230
303	On the effect of Pauli repulsion and dispersion on static molecular polarizabilities and hyperpolarizabilities in solution. Chemical Physics Letters, 1998, 286, 221-225.	1.2	44
304	Ab initio study of ionic solutions by a polarizable continuum dielectric model. Chemical Physics Letters, 1998, 286, 253-260.	1.2	1,493
305	Title is missing!. Journal of Mathematical Chemistry, 1998, 23, 309-326.	0.7	422
306	Solvent and vibrational effects on molecular electric properties. Static and dynamic polarizability and hyperpolarizabilities of urea in water. Computational and Theoretical Chemistry, 1998, 426, 191-198.	1.5	22

#	Article	IF	Citations
307	Correction of cavity-induced errors in polarization charges of continuum solvation models. Journal of Computational Chemistry, 1998, 19, 833-846.	1.5	64
308	An ab initio time-dependent Hartree–Fock study of solvent effects on the polarizability and second hyperpolarizability of polyacetylene chains within the polarizable continuum model. Chemical Physics, 1998, 238, 153-163.	0.9	28
309	Analytical derivatives for geometry optimization in solvation continuum models. I. Theory. Journal of Chemical Physics, 1998, 109, 249-259.	1.2	106
310	Recent Advances in the Description of Solvent Effects with the Polarizable Continuum Model. Advances in Quantum Chemistry, 1998, 32, 227-261.	0.4	411
311	MCSCF Study of the SN2 Menshutkin Reaction in Aqueous Solution within the Polarizable Continuum Model. Journal of Physical Chemistry B, 1998, 102, 3023-3028.	1.2	62
312	On the Calculation of Local Field Factors for Microscopic Static Hyperpolarizabilities of Molecules in Solution with the Aid of Quantum-Mechanical Methods. Journal of Physical Chemistry A, 1998, 102, 870-875.	1.1	114
313	Solvent Effects on Linear and Nonlinear Optical Properties of Donorâ'Acceptor Polyenes: Investigation of Electronic and Vibrational Components in Terms of Structure and Charge Distribution Changes. Journal of the American Chemical Society, 1998, 120, 8834-8847.	6.6	101
314	Excited states and solvatochromic shifts within a nonequilibrium solvation approach: A new formulation of the integral equation formalism method at the self-consistent field, configuration interaction, and multiconfiguration self-consistent field level. Journal of Chemical Physics, 1998, 109, 2798-2807.	1.2	366
315	Analytical derivatives for geometry optimization in solvation continuum models. II. Numerical applications. Journal of Chemical Physics, 1998, 109, 260-266.	1.2	93
316	Evaluation of Solvent Effects in Isotropic and Anisotropic Dielectrics and in Ionic Solutions with a Unified Integral Equation Method:  Theoretical Bases, Computational Implementation, and Numerical Applications. Journal of Physical Chemistry B, 1997, 101, 10506-10517.	1.2	1,881
317	Self-Consistent-Field Calculation of Pauli Repulsion and Dispersion Contributions to the Solvation Free Energy in the Polarizable Continuum Model. Journal of Physical Chemistry B, 1997, 101, 1051-1057.	1.2	226
318	A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics. Journal of Chemical Physics, 1997, 107, 3032-3041.	1.2	5,950
319	Continuum solvation models: A new approach to the problem of solute's charge distribution and cavity boundaries. Journal of Chemical Physics, 1997, 106, 5151-5158.	1.2	2,463
320	Solvent effects on static and dynamic polarizability and hyperpolarizabilities of acetonitrile. Journal of Molecular Structure, 1997, 436-437, 567-575.	1.8	19
321	Analytical first derivatives of molecular surfaces with respect to nuclear coordinates. Journal of Computational Chemistry, 1996, 17, 57-73.	1.5	102
322	Energy and energy derivatives for molecular solutes: Perspectives of application to hybrid quantum and molecular methods. International Journal of Quantum Chemistry, 1996, 60, 1165-1178.	1.0	13
323	Analytical Hartree–Fock calculation of the dynamical polarizabilities α, β, and γ of molecules in solution. Journal of Chemical Physics, 1996, 105, 10556-10564.	1.2	149
324	Cavitation and Electrostatic Free Energy for Molecular Solutes in Liquid Crystals. The Journal of Physical Chemistry, 1996, 100, 1807-1813.	2.9	18

#	Article	IF	CITATIONS
325	A theoretical model of solvation in continuum anisotropic dielectrics. Journal of Chemical Physics, 1995, 102, 6837-6845.	1.2	43
326	Solute—solvent electrostatic interactions with non-homogeneous radial dielectric functions. Chemical Physics Letters, 1994, 228, 165-170.	1.2	55
327	Properties and Spectroscopies. , 0, , 125-312.		3
328	Beyond the Continuum Approach., 0,, 499-605.		6
329	Excitonic Nature of Carotenoid–Phthalocyanine Dyads and Its Role in Transient Absorption Spectra. ACS Physical Chemistry Au, 0, , .	1.9	0
330	A Î"SCF model for excited states within a polarisable embedding. Molecular Physics, 0, , .	0.8	4