
Takashi Matozaki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4499309/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Small GTP-Binding Proteins. Physiological Reviews, 2001, 81, 153-208.	28.8	2,235
2	Functions and molecular mechanisms of the CD47–SIRPα signalling pathway. Trends in Cell Biology, 2009, 19, 72-80.	7.9	379
3	CD47–signal regulatory protein-α (SIRPα) interactions form a barrier for antibody-mediated tumor cell destruction. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 18342-18347.	7.1	256
4	Negative Regulation of Phagocytosis in Macrophages by the CD47-SHPS-1 System. Journal of Immunology, 2005, 174, 2004-2011.	0.8	249
5	Neutrophils Kill Antibody-Opsonized Cancer Cells by Trogoptosis. Cell Reports, 2018, 23, 3946-3959.e6.	6.4	245
6	Protein tyrosine phosphatase SHPâ€2: A protoâ€oncogene product that promotes Ras activation. Cancer Science, 2009, 100, 1786-1793.	3.9	206
7	Promotion of Intestinal Epithelial Cell Turnover by Commensal Bacteria: Role of Short-Chain Fatty Acids. PLoS ONE, 2016, 11, e0156334.	2.5	182
8	The CD47-SIRPÂ signalling system: its physiological roles and therapeutic application. Journal of Biochemistry, 2014, 155, 335-344.	1.7	132
9	Integrin-mediated Tyrosine Phosphorylation of SHPS-1 and Its Association with SHP-2. Journal of Biological Chemistry, 1998, 273, 13223-13229.	3.4	131
10	Anti-SIRPα antibodies as a potential new tool for cancer immunotherapy. JCI Insight, 2017, 2, e89140.	5.0	120
11	SHPS-1 promotes the survival of circulating erythrocytes through inhibition of phagocytosis by splenic macrophages. Blood, 2006, 107, 341-348.	1.4	114
12	<scp>CD</scp> 47â€signal regulatory protein α signaling system and its application to cancer immunotherapy. Cancer Science, 2018, 109, 2349-2357.	3.9	99
13	Role of the CD47-SHPS-1 system in regulation of cell migration. EMBO Journal, 2003, 22, 2634-2644.	7.8	84
14	Regulation by SIRPÎ \pm of dendritic cell homeostasis in lymphoid tissues. Blood, 2010, 116, 3517-3525.	1.4	64
15	Positive Regulation of Phagocytosis by SIRPÎ ² and Its Signaling Mechanism in Macrophages. Journal of Biological Chemistry, 2004, 279, 29450-29460.	3.4	61
16	Characterization of a 115-kDa Protein That Binds to SH-PTP2, a Protein-tyrosine Phosphatase with Src Homology 2 Domains, in Chinese Hamster Ovary Cells. Journal of Biological Chemistry, 1996, 271, 27652-27658.	3.4	60
17	SIRPα/CD172a Regulates Eosinophil Homeostasis. Journal of Immunology, 2011, 187, 2268-2277.	0.8	54
18	Expression, localization, and biological function of the R3 subtype of receptor-type protein tyrosine phosphatases in mammals. Cellular Signalling, 2010, 22, 1811-1817.	3.6	52

Τακάσηι Ματοζακι

#	Article	IF	CITATIONS
19	Resistance to Experimental Autoimmune Encephalomyelitis and Impaired T Cell Priming by Dendritic Cells in Src Homology 2 Domain-Containing Protein Tyrosine Phosphatase Substrate-1 Mutant Mice. Journal of Immunology, 2007, 179, 869-877.	0.8	50
20	Dendritic Cell-Specific Ablation of the Protein Tyrosine Phosphatase Shp1 Promotes Th1 Cell Differentiation and Induces Autoimmunity. Journal of Immunology, 2012, 188, 5397-5407.	0.8	49
21	Differential Localization of Src Homology 2 Domain-Containing Protein Tyrosine Phosphatase Substrate-1 and CD47 and Its Molecular Mechanisms in Cultured Hippocampal Neurons. Journal of Neuroscience, 2005, 25, 2702-2711.	3.6	47
22	SAPâ€1 is a microvillusâ€specific protein tyrosine phosphatase that modulates intestinal tumorigenesis. Genes To Cells, 2009, 14, 295-308.	1.2	47
23	Stress-Evoked Tyrosine Phosphorylation of Signal Regulatory Protein α Regulates Behavioral Immobility in the Forced Swim Test. Journal of Neuroscience, 2010, 30, 10472-10483.	3.6	41
24	Protein tyrosine phosphatase SAP-1 protects against colitis through regulation of CEACAM20 in the intestinal epithelium. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E4264-E4271.	7.1	39
25	Microglial SIRPÎ \pm regulates the emergence of CD11c+ microglia and demyelination damage in white matter. ELife, 2019, 8, .	6.0	39
26	Inflammation-induced proteolytic processing of the SIRPα cytoplasmic ITIM in neutrophils propagates a proinflammatory state. Nature Communications, 2013, 4, 2436.	12.8	38
27	The BALB/c-specific polymorphic SIRPA enhances its affinity for human CD47, inhibiting phagocytosis against human cells to promote xenogeneic engraftment. Experimental Hematology, 2014, 42, 163-171.e1.	0.4	35
28	Antiâ€human <scp>SIRP</scp> α antibody is a new tool for cancer immunotherapy. Cancer Science, 2018, 109, 1300-1308.	3.9	34
29	Trans-endocytosis of CD47 and SHPS-1 and its role in regulation of the CD47–SHPS-1 system. Journal of Cell Science, 2008, 121, 1213-1223.	2.0	32
30	Shp2 in Forebrain Neurons Regulates Synaptic Plasticity, Locomotion, and Memory Formation in Mice. Molecular and Cellular Biology, 2015, 35, 1557-1572.	2.3	32
31	Macrocyclic Peptide-Mediated Blockade of the CD47-SIRPα Interaction as a Potential Cancer Immunotherapy. Cell Chemical Biology, 2020, 27, 1181-1191.e7.	5.2	32
32	Role of the Protein Tyrosine Phosphatase Shp2 in Homeostasis of the Intestinal Epithelium. PLoS ONE, 2014, 9, e92904.	2.5	28
33	SIRPα ⁺ dendritic cells regulate homeostasis of fibroblastic reticular cells via TNF receptor ligands in the adult spleen. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E10151-E10160.	7.1	27
34	Dendritic cell SIRPα regulates homeostasis of dendritic cells in lymphoid organs. Genes To Cells, 2015, 20, 451-463.	1.2	26
35	Tyrosine phosphorylation of R3 subtype receptorâ€ŧype protein tyrosine phosphatases and their complex formations with Grb2 or Fyn. Genes To Cells, 2010, 15, 513-524.	1.2	25
36	Regulation by Src Homology 2 Domain-Containing Protein Tyrosine Phosphatase Substrate-1 of α-Galactosylceramide-Induced Antimetastatic Activity and Th1 and Th2 Responses of NKT Cells. Journal of Immunology, 2007, 178, 6164-6172.	0.8	24

Τακάσηι Ματοζακι

#	Article	IF	CITATIONS
37	Deletion of SIRPα (signal regulatory protein-α) promotes phagocytic clearance of myelin debris in Wallerian degeneration, axon regeneration, and recovery from nerve injury. Journal of Neuroinflammation, 2019, 16, 277.	7.2	24
38	Shear Stress-induced Redistribution of Vascular Endothelial-Protein-tyrosine Phosphatase (VE-PTP) in Endothelial Cells and Its Role in Cell Elongation. Journal of Biological Chemistry, 2014, 289, 6451-6461.	3.4	23
39	Role of Src Family Kinases in Regulation of Intestinal Epithelial Homeostasis. Molecular and Cellular Biology, 2016, 36, 2811-2823.	2.3	23
40	Comprehensive Behavioral Analysis of Cluster of Differentiation 47 Knockout Mice. PLoS ONE, 2014, 9, e89584.	2.5	22
41	Negative regulation by SHPSâ€1 of Tollâ€like receptorâ€dependent proinflammatory cytokine production in macrophages. Genes To Cells, 2008, 13, 209-219.	1.2	21
42	Essential roles of SHPS-1 in induction of contact hypersensitivity of skin. Immunology Letters, 2008, 121, 52-60.	2.5	18
43	Roles of Src family kinase, Ras, and mTOR signaling in intestinal epithelial homeostasis and tumorigenesis. Cancer Science, 2021, 112, 16-21.	3.9	17
44	Expression of PTPRO in the interneurons of adult mouse olfactory bulb. Journal of Comparative Neurology, 2010, 518, 119-136.	1.6	16
45	Role of lysophosphatidic acid in proliferation and differentiation of intestinal epithelial cells. PLoS ONE, 2019, 14, e0215255.	2.5	16
46	Regulation of Ras and Rho small G proteins by SHP-2. Genes To Cells, 2001, 6, 869-876.	1.2	15
47	Essential roles of SIRPα in homeostatic regulation of skin dendritic cells. Immunology Letters, 2011, 135, 100-107.	2.5	15
48	Autoimmune animal models in the analysis of the CD47–SIRPα signaling pathway. Methods, 2014, 65, 254-259.	3.8	13
49	Role of SIRPα in regulation of mucosal immunity in the intestine. Genes To Cells, 2010, 15, 1189-1200.	1.2	9
50	Regulation of Small Intestinal Epithelial Homeostasis by Tsc2-mTORC1 Signaling. Kobe Journal of Medical Sciences, 2019, 64, E200-E209.	0.2	9
51	Anticancer efficacy of monotherapy with antibodies to SIRPα/SIRPβ1 mediated by induction of antitumorigenic macrophages. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	9
52	Regulation by commensal bacteria of neurogenesis in the subventricular zone of adult mouse brain. Biochemical and Biophysical Research Communications, 2018, 498, 824-829.	2.1	8
53	Regulation of colonic epithelial cell homeostasis by mTORC1. Scientific Reports, 2020, 10, 13810.	3.3	8
54	SIRPα on CD11c ⁺ cells induces Th17 cell differentiation and subsequent inflammation in the CNS in experimental autoimmune encephalomyelitis. European Journal of Immunology, 2020, 50, 1560-1570.	2.9	8

Τακάσηι Ματοζακι

#	Article	IF	CITATIONS
55	Prion pathogenesis is unaltered in the absence of SIRPα-mediated "don't-eat-me" signaling. PLoS ONE, 2017, 12, e0177876.	2.5	7
56	Role of Csk in intestinal epithelial barrier function and protection against colitis. Biochemical and Biophysical Research Communications, 2018, 504, 109-114.	2.1	6
57	SIRPα ⁺ dendritic cells promote the development of fibroblastic reticular cells in murine peripheral lymph nodes. European Journal of Immunology, 2019, 49, 1364-1371.	2.9	6
58	Blockade of CD47 or SIRPα: a new cancer immunotherapy. Expert Opinion on Therapeutic Targets, 2020, 24, 945-951.	3.4	6
59	SIRPα on Mouse B1 Cells Restricts Lymphoid Tissue Migration and Natural Antibody Production. Frontiers in Immunology, 2020, 11, 570963.	4.8	5
60	Role of Ras in regulation of intestinal epithelial cell homeostasis and crosstalk with Wnt signaling. PLoS ONE, 2021, 16, e0256774.	2.5	2
61	Lack of SIRPα phosphorylation and concomitantly reduced SHP-2–PI3K–Akt2 signaling decrease osteoblast differentiation. Biochemical and Biophysical Research Communications, 2016, 478, 268-273.	2.1	1
62	Future therapeutic potential of SAP-1 in inflammatory bowel diseases. Expert Review of Gastroenterology and Hepatology, 2016, 10, 1313-1315.	3.0	0
63	Sirpa. , 2017, , 1-7.		0
64	Role of SIRPα in Homeostatic Regulation of T Cells and Fibroblastic Reticular Cells in the Spleen. Kobe Journal of Medical Sciences, 2017, 63, E22-E29.	0.2	0