
Zhenji Gan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/449916/publications.pdf Version: 2024-02-01

ZHENUL CAN

#	Article	IF	CITATIONS
1	Disuse-associated loss of the protease LONP1 in muscle impairs mitochondrial function and causes reduced skeletal muscle mass and strength. Nature Communications, 2022, 13, 894.	12.8	35
2	FNIP1 regulates adipocyte browning and systemic glucose homeostasis in mice by shaping intracellular calcium dynamics. Journal of Experimental Medicine, 2022, 219, .	8.5	9
3	Comments on â€~ <i>FNIP1 regulates adipocyte browning and systemic glucose homeostasis in mice by shaping intracellular calcium dynamics</i> '. Journal of Molecular Cell Biology, 2022, , .	3.3	0
4	AMPK-dependent and -independent coordination of mitochondrial function and muscle fiber type by FNIP1. PLoS Genetics, 2021, 17, e1009488.	3.5	16
5	Increased glycolysis in skeletal muscle coordinates with adipose tissue in systemic metabolic homeostasis. Journal of Cellular and Molecular Medicine, 2021, 25, 7840-7854.	3.6	11
6	IRE1α regulates skeletal muscle regeneration through myostatin mRNA decay. Journal of Clinical Investigation, 2021, 131, .	8.2	22
7	The intragenic microRNA miR199A1 in the dynamin 2 gene contributes to the pathology of X-linked centronuclear myopathy. Journal of Biological Chemistry, 2020, 295, 8656-8667.	3.4	10
8	Histone methyltransferase MLL4 controls myofiber identity and muscle performance through MEF2 interaction. Journal of Clinical Investigation, 2020, 130, 4710-4725.	8.2	24
9	Distant coupling between RNA editing and alternative splicing of the osmosensitive cation channel Tmem63b. Journal of Biological Chemistry, 2020, 295, 18199-18212.	3.4	14
10	Mitochondrion-targeted platinum complexes suppressing lung cancer through multiple pathways involving energy metabolism. Chemical Science, 2019, 10, 3089-3095.	7.4	119
11	Coupling of COPII vesicle trafficking to nutrient availability by the IRE1α-XBP1s axis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11776-11785.	7.1	35
12	Mitochondrial quality orchestrates muscle-adipose dialog to alleviate dietary obesity. Pharmacological Research, 2019, 141, 176-180.	7.1	4
13	Erythrocyte PUFAs, circulating acylcarnitines, and metabolic syndrome risk: a prospective study in Chinese. Journal of Lipid Research, 2019, 60, 421-429.	4.2	10
14	Mitophagy Directs Muscle-Adipose Crosstalk to Alleviate Dietary Obesity. Cell Reports, 2018, 23, 1357-1372.	6.4	94
15	Targeted reversal and phosphorescence lifetime imaging of cancer cell metabolism via a theranostic rhenium(I)-DCA conjugate. Biomaterials, 2018, 176, 94-105.	11.4	46
16	Skeletal muscle mitochondrial remodeling in exercise and diseases. Cell Research, 2018, 28, 969-980.	12.0	151
17	Simultaneously Inducing and Tracking Cancer Cell Metabolism Repression by Mitochondria-Immobilized Rhenium(I) Complex. ACS Applied Materials & Interfaces, 2017, 9, 13900-13912.	8.0	78
18	Coupling of mitochondrial function and skeletal muscle fiber type by a miRâ€499/Fnip1/ <scp>AMPK</scp> circuit. EMBO Molecular Medicine, 2016, 8, 1212-1228.	6.9	85

Zhenji Gan

#	Article	IF	CITATIONS
19	Exercise Inducible Lactate Dehydrogenase B Regulates Mitochondrial Function in Skeletal Muscle. Journal of Biological Chemistry, 2016, 291, 25306-25318.	3.4	66
20	Transcriptional regulatory circuits controlling muscle fiber type switching. Science China Life Sciences, 2015, 58, 321-327.	4.9	17
21	Nuclear receptor/microRNA circuitry links muscle fiber type to energy metabolism. Journal of Clinical Investigation, 2013, 123, 2564-2575.	8.2	170
22	The nuclear receptor PPARβ/δ programs muscle glucose metabolism in cooperation with AMPK and MEF2. Genes and Development, 2011, 25, 2619-2630.	5.9	122