Zhengjun Quan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4499082/publications.pdf

Version: 2024-02-01

108 papers	1,506 citations	22 h-index	4	29 g-index
109 all docs	109 docs citations	109 times ranked		1344 citing authors

#	Article	IF	CITATIONS
1	PEGâ€SO3H as Catalyst for 3,4â€Dihydropyrimidones via Biginelli Reaction Under Microwave and Solventâ€Free Conditions. Synthetic Communications, 2006, 36, 451-456.	2.1	68
2	Palladium(II) Catalyzed Suzuki/Sonogashira Crossâ€Coupling Reactions of Sulfonates: An Efficient Approach to C2â€Functionalized Pyrimidines and Pyridines. European Journal of Organic Chemistry, 2013, 2013, 7175-7183.	2.4	44
3	Chemoâ€Controlled Crossâ€Coupling of Di(hetero)aryl Disulfides with Grignard Reagents: CC <i>vs.</i> CS Bond Formation. Advanced Synthesis and Catalysis, 2015, 357, 1270-1276.	4.3	43
4	Chemoselective Carbonâ€Carbon Crossâ€Coupling <i>via</i> Palladiumâ€Catalyzed Copperâ€Mediated CS Cleavage of Disulfides. Advanced Synthesis and Catalysis, 2014, 356, 325-332.	4.3	37
5	Double-Oxidative Dehydrogenative (DOD) [4 + 2]-Cyclization/Oxidative Aromatization Tandem Reaction of Glycine Derivatives with Ethylbenzenes. Organic Letters, 2018, 20, 4649-4653.	4.6	37
6	Conversion of carbohydrates into 5-hydroxymethylfurfural using polymer bound sulfonic acids as efficient and recyclable catalysts. RSC Advances, 2013, 3, 9201.	3.6	35
7	Selective reduction of nitro-compounds to primary amines by nickel-catalyzed hydrosilylative reduction. RSC Advances, 2015, 5, 84574-84577.	3.6	35
8	Synthesis of stilbene derivatives via visible-light-induced cross-coupling of aryl diazonium salts with nitroalkenes using –NO ₂ as a leaving group. Chemical Communications, 2016, 52, 14234-14237.	4.1	34
9	A Domino Desulfitative Coupling/Acylation/Hydration Process Cocatalyzed by Copper(I) and Palladium(II): Synthesis of Highly Substituted and Functionalized Pyrimidines. Advanced Synthesis and Catalysis, 2012, 354, 2939-2948.	4.3	30
10	Visible-light promoted \hat{l} ±-alkylation of glycine derivatives with alkyl boronic acids. Chemical Communications, 2021, 57, 1959-1962.	4.1	30
11	Copper-catalyzed click synthesis of functionalized 1,2,3-triazoles with 3,4-dihydropyrimidinone or amide group via a one-pot four-component reaction. Tetrahedron, 2013, 69, 881-887.	1.9	29
12	AgSCF ₃ /Na ₂ S ₂ O ₈ -Promoted Trifluoromethylthiolation/Cyclization of <i>o</i> Synthesis of SCF ₃ -Substituted Quinolines and Isoquinolines. Journal of Organic Chemistry, 2019, 84, 4165-4178.	3.2	29
13	Synthesis of 2-Substituted Pyrimidines via Cross-Coupling Reaction of Pyrimidin-2-yl Sulfonates with Nucleophiles in Polyethylene Glycol 400. Synlett, 2010, 2010, 1657-1660.	1.8	28
14	Copper atalyzed Amination of Aryl Halides with Aqueous Ammonia under Mild Conditions. Chinese Journal of Chemistry, 2013, 31, 501-506.	4.9	27
15	Dehydration of biomass to furfural catalyzed by reusable polymer bound sulfonic acid (PEG-OSO3H) in ionic liquid. Catalysis Science and Technology, 2014, 4, 633.	4.1	27
16	Ironâ€catalyzed crossâ€coupling of heteroaromatic tosylates with alkyl and aryl Grignard reagents. Applied Organometallic Chemistry, 2015, 29, 296-300.	3.5	26
17	Base-controlled chemoselectivity reaction of vinylanilines with isothiocyanates for synthesis of quinolino-2-thione and 2-aminoquinoline derivatives. Chemical Communications, 2018, 54, 3114-3117.	4.1	26
18	Oneâ€Pot Synthesis of Allylamine Derivatives by Iodine―Catalyzed Threeâ€Component Reaction of Nâ€Heterocycles, Paraformaldehyde and Styrenes. Advanced Synthesis and Catalysis, 2013, 355, 891-900.	4.3	25

#	Article	IF	CITATIONS
19	Synthesis of C4-Substituted Indoles via a Catellani and C–N Bond Activation Strategy. Organic Letters, 2020, 22, 8267-8271.	4.6	25
20	Base-catalyzed thio-lactamization of 2-(1-arylvinyl)anilines with CS ₂ for the synthesis of quinoline-2-thiones. Chemical Communications, 2018, 54, 499-502.	4.1	24
21	Visible-light-promoted decarboxylative addition cyclization of $\langle i \rangle N \langle l \rangle$ -aryl glycines and azobenzenes to access 1,2,4-triazolidines. Green Chemistry, 2021, 23, 5806-5811.	9.0	24
22	One-Pot, Three-Component Synthesis of 1,4-Dihydropyridines in PEG-400. Synthetic Communications, 2011, 41, 3251-3258.	2.1	23
23	A domino desulfurative coupling–acylation–hydration–Michael addition process for the synthesis of polysubstituted tetrahydro-4H-pyrido[1,2-a]pyrimidines. Chemical Communications, 2014, 50, 13555-13558.	4.1	23
24	Solvent-Free Synthesis of 2-Furyl-5-aryloxyacetylamido-1,3,4-thiadiazoles Under Microwave Irradiation. Synthetic Communications, 2003, 33, 2891-2897.	2.1	21
25	Crossâ€Coupling Reactions of Pyrimidinâ€2â€yl Sulfonates with Phenols and Anilines: An Efficient Approach to C2â€Functionalized Pyrimidines. Chinese Journal of Chemistry, 2013, 31, 1495-1502.	4.9	21
26	The 2-phosphaethynolate anion: convenient synthesis and the reactivity. Organic Chemistry Frontiers, 2014, 1, 1128-1131.	4.5	21
27	A Neat and Rapid Synthesis of 2â€Aryloxymethyleneâ€6â€Arylimidazo[2,1â€b]â€1,3,4â€Thiadiazole Under Micro Irradiation. Synthetic Communications, 2005, 35, 2881-2888.	wave 2.1	20
28	Synthesis of C2-functionalized pyrimidines from 3,4-dihydropyrimidin-2(1H)-ones by the Mitsunobu coupling reaction. Tetrahedron, 2011, 67, 3267-3272.	1.9	20
29	(2-Chlorobenzoyloxy)copper(<scp>i</scp>) catalyzed C–S cross-coupling of di(hetero)aryl disulfides with aryl boronic acids under base-free conditions. RSC Advances, 2015, 5, 45479-45483.	3.6	20
30	Wool-anchored Pd(OAc) ₂ complex: a highly active and reusable catalyst for desulfurative coupling reactions. Catalysis Science and Technology, 2015, 5, 4522-4531.	4.1	20
31	Copper(<scp>i</scp>) chloride promoted Csp ² â€"N cross-coupling of 1,2-di(pyrimidin-2-yl) disulfides with amines: an efficient approach to obtain C2-amino functionalized pyrimidines. Organic and Biomolecular Chemistry, 2016, 14, 2395-2398.	2.8	19
32	Glycerol as an Alternative Green Reaction Medium for Multicomponent Reactions Using PS-PEG-OSO ₃ H as Catalyst. Synthetic Communications, 2011, 41, 3106-3116.	2.1	18
33	Efficient synthesis of 5 <i>H</i> â€thiazolo[3,2â€ <i>a</i>]pyrimidines from reactions of 3,4â€dihydropyrimidineâ€thiones with αâ€bromoacetone in aqueous media. Heteroatom Chemistry, 2008, 19, 149-153.	0.7	17
34	lodine promoted cascade cycloisomerization of 1-en-6,11-diynes. Chemical Communications, 2020, 56, 1421-1424.	4.1	17
35	Visible-Light-Promoted Diboron-Mediated Transfer Hydrogenation of Azobenzenes to Hydrazobenzenes. Journal of Organic Chemistry, 2021, 86, 4804-4811.	3.2	17
36	Synthesis of N-Benzothiazol-2-yl-amides by an Iron-Catalyzed Oxidative C(sp2)â€"H Functionalization. Synlett, 2014, 25, 2143-2148.	1.8	16

#	Article	IF	CITATIONS
37	Nickelâ€Catalyzed Denitrated Coupling Reaction of Nitroalkenes with Aliphatic and Aromatic Alkenes. Advanced Synthesis and Catalysis, 2016, 358, 3179-3183.	4.3	16
38	Synthesis and application of eco-friendly superabsorbent composites based on xanthan gum and semi-coke. International Journal of Biological Macromolecules, 2021, 179, 230-238.	7. 5	16
39	Direct hydroxyethylation of amines by carbohydrates <i>via</i> ruthenium catalysis. Green Chemistry, 2019, 21, 3127-3132.	9.0	15
40	Synthesis, characterization, and swelling behaviors of sodium carboxymethyl cellulose-g-poly(acrylic) Tj ETQq0 0 () rgBT /Ov	erlock 10 Tf
41	One-pot synthesis of benzoquinoline and coumarin derivatives using Meldrum's acid in three-component reactions. Research on Chemical Intermediates, 2013, 39, 2357-2367.	2.7	14
42	Synthesis of C8-Aminated Pyrrolo-Phenanthridines or -Indoles via Series C(sp ² or) Tj ETQq0 0 0 rgBT	/Qverlock	10 Tf 50 542
43	Air promoted annulation of thiophenols with alkynes leading to benzothiophenes. Organic and Biomolecular Chemistry, 2018, 16, 1667-1671.	2.8	13
44	Palladium-Catalyzed Synthesis of Tricyclic Indoles via a N–S Bond Cleavage Strategy. Organic Letters, 2021, 23, 7518-7523.	4.6	13
45	Adsorption of rhodamine B by organic porous materials rich in nitrogen, oxygen, and sulfur heteroatoms. New Journal of Chemistry, 2021, 45, 3448-3453.	2.8	13
46	Visible light promoted polyhalomethylation of alkenes: alkylation and cyclization. Organic Chemistry Frontiers, 2022, 9, 1004-1009.	4.5	13
47	Inverse Vulcanization with SiO ₂ -Embedded Elemental Sulfur for Superhydrophobic, Anticorrosion, and Antibacterial Coatings. ACS Applied Polymer Materials, 2022, 4, 4901-4911.	4.4	13
48	C–C/C–N cross-coupling reactions of aryl sulfonates catalyzed by an eco-friendly and reusable heterogeneous catalyst: wool–Pd complex. RSC Advances, 2015, 5, 59770-59779.	3.6	12
49	Ligandâ€free CuTCâ€catalyzed <i>N</i> â€arylation of amides, anilines and 4â€aminoantipyrine: synthesis of <i>N</i> â€arylacrylamides, 4â€amidoâ€ <i>N</i> â€phenylbenzamides and 4â€amino(<i>N</i> â€phenyl)antipyrer Applied Organometallic Chemistry, 2014, 28, 81-85.	າe s. 5	11
50	Copper(I)-Promoted C–N Cross-Coupling of N-Heterocyclic Compounds with 1,2-Di(pyrimidin-2-yl) Disulfides. Synlett, 2016, 27, 1743-1747.	1.8	11
51	UV light enabled methylation of quinoline-2-thione using dimethyl sulfoxide to give quinoline methyl sulfide. Tetrahedron Letters, 2018, 59, 4426-4429.	1.4	11
52	Efficient synthesis of esters through oxone-catalyzed dehydrogenation of carboxylic acids and alcohols. Organic and Biomolecular Chemistry, 2018, 16, 9472-9476.	2.8	11
53	The solvent-controlled chemoselective construction of C–S/S–S bonds <i>via</i> the Michael reaction/thiol coupling of quinoline-2-thiones. Organic and Biomolecular Chemistry, 2019, 17, 2379-2383.	2.8	11
54	Copperâ€Catalyzed Aerobic Oxidative Dehydrogenative Ringâ€Opening Reaction of Glycine Esters with α′â€Angelicalactone: Approach to Construct αâ€Aminoâ€Î³â€Ketopimelates. Advanced Synthesis and Catalys 361, 3436-3440.	sis 4.2 019,	11

#	Article	IF	Citations
55	Utilization of 2â€benzo[<i>b</i>]furan carboxylic acid hydrazide in the synthesis of 1,3,4â€oxadiazole derivatives. Journal of Heterocyclic Chemistry, 2009, 46, 737-741.	2.6	10
56	General and Green Synthesis of C-6 Sulfonylmethyl 4-Aryl-3,4-dihydropyrimidinones in Water. Synthetic Communications, 2009, 39, 2230-2239.	2.1	10
57	I ₂ â€Induced Stereospecific Synthesis of 4â€Piperidones through Double Mannich Reaction and Tandem Cyclization. European Journal of Organic Chemistry, 2011, 2011, 1627-1631.	2.4	10
58	lodine-catalyzed three-component reaction of quinazoline-2,5-diones with aldehydes and styrenes for the synthesis of allylamine derivatives. Tetrahedron, 2014, 70, 9093-9098.	1.9	10
59	Nickelâ€catalyzed Buchwald–Hartwig amination of pyrimidinâ€2â€yl tosylates with indole, benzimidazole and 1,2,4â€triazole. Applied Organometallic Chemistry, 2016, 30, 949-953.	3.5	10
60	Direct Câ€"H heteroarylation of azoles with 1,2-di(pyrimidin-2-yl)disulfides through Câ€"S cleavage of disulfides. RSC Advances, 2016, 6, 78059-78063.	3.6	10
61	Ironâ€Catalyzed C(<i>sp</i> ³)â^C(<i>sp</i> ³) Bond Formation in 3,4â€Dihydroâ€1,4â€benzoxazinâ€2â€ones. Advanced Synthesis and Catalysis, 2017, 359, 3940-3944.	4.3	10
62	Mechanochemical Synthesis of Phosphinecarboxamides by Reaction of 2â€Phosphaethynolate Anion and Amines under Acidâ€Free Conditions: A Combined Scope and Mechanism Investigation. European Journal of Organic Chemistry, 2017, 2017, 5546-5553.	2.4	10
63	Iron(II)-Catalyzed Bisphosphorylation Cascade Cycloisomerization of Î ³ -Hydroxyl Ynones and Diphenylphosphine Oxides: Synthesis of Highly Substituted Bisphosphorylated Dihydrofuran Derivatives. Organic Letters, 2022, 24, 2264-2268.	4.6	10
64	Synthesis and Xâ€ray characterization of 2,5,6â€trisubstituted imidazo[2,1â€ <i>b</i>][1,3,4]thiadiazole derivatives. Journal of Heterocyclic Chemistry, 2012, 49, 102-105.	2.6	9
65	A biomass-derived N-doped porous carbon catalyst for the aerobic dehydrogenation of nitrogen heterocycles. New Journal of Chemistry, 2022, 46, 1791-1799.	2.8	9
66	Directed Copper-Catalyzed Tandem Radical Cyclization Reaction of Alkyl Bromides and Unactivated Olefins. Organic Letters, 2022, 24, 2738-2743.	4.6	9
67	Synthesis of Soai Type 2â€Arylpyrimidineâ€5â€carbaldehydes through Desulfurative Crossâ€Coupling with Arylboronic Acids. European Journal of Organic Chemistry, 2014, 2014, 7426-7432.	2.4	8
68	Nucleophilic Substitution Reaction of Pyrimidin-2-yl Phosphates Using Amines and Thiols as Nucleophiles Mediated by PEG-400 as an Environmentally Friendly Solvent. Synthesis, 2015, 47, 3925-3935.	2.3	8
69	Oneâ€Pot Synthesis of 2â€Acyliminoâ€3â€arylâ€thiazoline Derivatives in Aqueous Media. Synthetic Communications, 2006, 36, 2453-2460.	2.1	7
70	Solvent-Free Synthesis of 2-Amino-5-Aryloxymenthyl1-1,3,4-Thiadiazoles and Their Coumarin or Benzofuran Bis-Heterocyclic Dericatives. Phosphorus, Sulfur and Silicon and the Related Elements, 2006, 181, 183-190.	1.6	7
71	Synthesis of 2â€(5â€Substitutedâ€1,3,4â€thiadiazoloâ€2â€ylimino)â€4â€thiazolidinones under Microwave Irrac Synthetic Communications, 2008, 38, 973-982.	liation. 2.1	7
72	Double Mannich Reaction and Tandem Cyclization of Imines with Ketones Catalyzed by Indium(III) Chloride Tetrahydrate: Stereoselective Synthesis of Highly Substituted 4â€Piperidones. Advanced Synthesis and Catalysis, 2011, 353, 315-319.	4.3	7

#	Article	IF	CITATIONS
73	lodineâ€Promoted Rapid Construction of Carbamoylphosphonates from Phosphinecarboxamides. Advanced Synthesis and Catalysis, 2018, 360, 2382-2388.	4.3	7
74	A free-radical-promoted stereospecific denitro silylation of \hat{l}^2 -nitroalkenes with silanes. Organic Chemistry Frontiers, 2019, 6, 3365-3368.	4.5	7
75	Autoâ€Oxidative Povarov/Aromatization Tandem Reaction of Glycine Derivatives with Enamides: Acylamino as both Activating and Leaving Group. Asian Journal of Organic Chemistry, 2020, 9, 925-928.	2.7	7
76	Tunable synthesis of furfurylamines or β-amino alcohols via Ru-catalyzed N–H functionalization using biomass-derived polyols. Green Synthesis and Catalysis, 2022, 3, 259-264.	6.8	7
77	An Environmentally Benign Access to Dimethylated 1,6â€Dihydropyrimidines Using Dimethyl Carbonate as Methylating Agent under Microwave. Chinese Journal of Chemistry, 2008, 26, 368-372.	4.9	6
78	An Efficient Amide-Aldehyde-Alkene Condensation: Synthesis for the N-Allyl Amides. Chemical Record, 2016, 16, 435-444.	5.8	6
79	Palladium-Catalyzed Copper-Promoted Hiyama-Type Carbon–ÂCarbon Cross-Coupling Reactions of Dihetaryl Disulfides as ÂElectrophiles. Synlett, 2018, 29, 330-335.	1.8	6
80	Electrochemically driven Pâ€"H oxidation and functionalization: synthesis of carbamoylphosphonates from phosphoramides and alcohols. New Journal of Chemistry, 2019, 43, 1531-1535.	2.8	6
81	Seleniumâ€Mediated Cyclization Reaction of 2â€Vinylanilines with/without Isonitriles: Efficient Synthesis of 2â€Aminoquinoline/ 3â€Arylâ€1 <i>H</i> à€indole Derivatives. Asian Journal of Organic Chemistry, 2020, 9, 588-592.	2.7	6
82	Synthesis, structural characterization, molecular docking study, biological activity of carbon monoxide release molecules as potent antitumor agents. Bioorganic Chemistry, 2021, 107, 104621.	4.1	6
83	Palladium-catalyzed dehydrogenation of dihydro-heterocycles using isoprene as the hydrogen acceptor without oxidants. Catalysis Science and Technology, 2017, 7, 565-569.	4.1	5
84	Nickelâ€Catalyzed Crossâ€Electrophile Coupling of Aryl Bromides with Pyrimidinâ€2â€yl Tosylates. Chinese Journal of Chemistry, 2017, 35, 1366-1370.	4.9	5
85	One-step synthesis of 3D-interconnected porous carbons derived from ephedra herb using calcium chloride and urea as co-activation for high-performance supercapacitors. lonics, 2019, 25, 3907-3914.	2.4	5
86	Diversification and Design of Novel Anilineâ€Pyrimidines via Sonogashira/Suzuki Cross Coupling Reactions Catalyzed by Novel CLPNâ€Pd. ChemistrySelect, 2021, 6, 13551-13558.	1.5	5
87	Expeditious Oneâ€Step Method to 5â€Arylâ€2â€furoyl Substituted Thioureas and Thiosemicarbazides in Aqueous Media. Synthetic Communications, 2006, 36, 843-847.	2.1	4
88	Molecular Iodine Promoted Synthesis of New Pyrido[2,3â€ <i>d</i>]pyrimidinâ€4â€ols. Chinese Journal of Chemistry, 2011, 29, 1646-1650.	4.9	4
89	Threeâ€Component Reaction of Pyrimidinâ€2â€yl Sulfonates with Sodium Azide and Alkynes: An Efficient Approach to C2â€"Triazolo Functionalized Pyrimidines. Journal of Heterocyclic Chemistry, 2015, 52, 1584-1588.	2.6	4
90	Metal-Free Visible-Light-Mediated Desulfurization and Aromatization of Dihydropyrimidine-2-thiones for Synthesis of 2-Unsubstituted Pyrimidines. Synlett, 2017, 28, 847-850.	1.8	4

#	Article	IF	CITATIONS
91	lodine-catalyzed direct allylation of chiral oxazolidinones by the amide-aldehyde-alkene condensation. Tetrahedron Letters, 2019, 60, 150927.	1.4	4
92	UVâ€Lightâ€Irradiated Trifluoromethylation of Diheteroaryl Disulfides with CF ₃ SO ₂ Na. European Journal of Organic Chemistry, 2019, 2019, 1208-1214.	2.4	4
93	Efficient Synthesis and Plant-Growth Regulating Activities of 1-Aryloxyacetyl-4-(2-benzofuroyl)-semicarbazides. Phosphorus, Sulfur and Silicon and the Related Elements, 2006, 181, 1397-1402.	1.6	3
94	The Synthesis of 2-(5-(Aryloxymethyl)-1,3,4-thiadiazol-2-ylthio)- <i>N</i> -arylacetamides at Room Temperature via Grinding. Phosphorus, Sulfur and Silicon and the Related Elements, 2010, 185, 1788-1795.	1.6	3
95	An Aluminum(III)-Catalyzed Thioamide–Aldehyde–Styrene Condensation: Direct Synthesis of Allylic Thioamide Derivatives. Synlett, 2016, 27, 2237-2240.	1.8	3
96	Electrochemical Synthesis of Sulfinic Esters via Aerobic Oxidative Esterification of Thiophenols with Alcohols. Synthesis, 2020, 52, 2705-2712.	2.3	3
97	Visible light-promoted intermolecular cyclization/aromatization of chalcones and 2-mercaptobenzimidazoles <i>via</i> an EDA complex and a mechanism study. Organic and Biomolecular Chemistry, 0, , .	2.8	3
98	Focused microwave-assisted efficient and convenient synthesis of new pyrido[2,3- <i>d</i>)pyrimidinone derivatives. Heterocyclic Communications, 2012, 18, 257-261.	1.2	2
99	One-pot synthesis of 4-aryl-7,7-dimethyl-5-oxo-3,4,5,6,7,8-hexahydrocoumarin derivatives in glycerol. Green Chemistry Letters and Reviews, 2017, 10, 134-137.	4.7	2
100	Câ€O and Câ€S coupling reaction of 1,2â€di(pyrimidinâ€2â€yl) disulfides with phenols/thiophenols promoted by copper(I) chloride. Heteroatom Chemistry, 2017, 28, .	0.7	2
101	Cu-nanoparticle-decorated sulfur-based polymers for highly sensitive nonenzymatic glucose detection. New Journal of Chemistry, 2021, 45, 16205-16212.	2.8	2
102	Palladium-catalyzed Hiyama cross-couplings of 2-chloro pyrimidines with organosilanes. Chemical Papers, 2022, 76, 2529-2535.	2.2	2
103	Synthesis of rare earth ternary complexes using tryptophan and sodium citrate and their anticoagulant action. Chemical Papers, 2012, 66, .	2.2	1
104	Efficient Synthesis of Arylaldehyde Oxime Ethers Functionalised with 3,4-dihydropyrimidinones and 2,5-quinazolinediones via a One-pot Two-step Method. Journal of Chemical Research, 2013, 37, 30-33.	1.3	1
105	Metalâ€Free Electrocatalytic C(sp ²)â€H Acyloxylation of Aromatic Ring to Synthesis of Acetoxylated Phenylethers. ChemistrySelect, 2021, 6, 13851-13855.	1.5	1
106	KF/Al ₂ O ₃ Promoted Aza-Michael Addition of 4-Aryl-7,7-Dimethyloctahydro-Quinazolinones to $\hat{l}\pm$, \hat{l}^2 -Ethylenic Compounds. Journal of Chemical Research, 2011, 35, 460-464.	1.3	0
107	Direct Allylation of Aliphatic Primary Amines via Al(OTf)3-Catalyzed One-Pot Four-Component Reaction. ChemistrySelect, 2017, 2, 10206-10209.	1.5	O
108	Autoâ€Oxidationâ€Induced Construction of Isatins from Glycine Derivatives. Asian Journal of Organic Chemistry, 2019, 8, 335-338.	2.7	0