Mark McCarthy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4498940/publications.pdf Version: 2024-02-01

557 papers	165,275 citations	⁷³ 172 h-index	66 377 g-index
612	612	612	127346
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Analysis of protein-coding genetic variation in 60,706 humans. Nature, 2016, 536, 285-291.	13.7	9,051
2	Finding the missing heritability of complex diseases. Nature, 2009, 461, 747-753.	13.7	7,490
3	The Genotype-Tissue Expression (GTEx) project. Nature Genetics, 2013, 45, 580-585.	9.4	6,815
4	The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in humans. Science, 2015, 348, 648-660.	6.0	4,659
5	A Common Variant in the FTO Gene Is Associated with Body Mass Index and Predisposes to Childhood and Adult Obesity. Science, 2007, 316, 889-894.	6.0	3,884
6	Genetic studies of body mass index yield new insights for obesity biology. Nature, 2015, 518, 197-206.	13.7	3,823
7	Age-Related Clonal Hematopoiesis Associated with Adverse Outcomes. New England Journal of Medicine, 2014, 371, 2488-2498.	13.9	3,474
8	Biological, clinical and population relevance of 95 loci for blood lipids. Nature, 2010, 466, 707-713.	13.7	3,249
9	10 Years of GWAS Discovery: Biology, Function, and Translation. American Journal of Human Genetics, 2017, 101, 5-22.	2.6	2,793
10	Discovery and refinement of loci associated with lipid levels. Nature Genetics, 2013, 45, 1274-1283.	9.4	2,641
11	Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nature Genetics, 2010, 42, 937-948.	9.4	2,634
12	Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nature Reviews Genetics, 2008, 9, 356-369.	7.7	2,496
13	A reference panel of 64,976 haplotypes for genotype imputation. Nature Genetics, 2016, 48, 1279-1283.	9.4	2,421
14	Five Years of GWAS Discovery. American Journal of Human Genetics, 2012, 90, 7-24.	2.6	2,088
15	Replication of Genome-Wide Association Signals in UK Samples Reveals Risk Loci for Type 2 Diabetes. Science, 2007, 316, 1336-1341.	6.0	2,040
16	Transcriptome and genome sequencing uncovers functional variation in humans. Nature, 2013, 501, 506-511.	13.7	1,857
17	Defining the role of common variation in the genomic and biological architecture of adult human height. Nature Genetics, 2014, 46, 1173-1186.	9.4	1,818
18	Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature, 2010, 467, 832-838.	13.7	1,789

#	Article	IF	CITATIONS
19	Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nature Genetics, 2012, 44, 981-990.	9.4	1,748
20	Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nature Genetics, 2008, 40, 638-645.	9.4	1,683
21	Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nature Genetics, 2010, 42, 579-589.	9.4	1,631
22	Six new loci associated with body mass index highlight a neuronal influence on body weight regulation. Nature Genetics, 2009, 41, 25-34.	9.4	1,572
23	Large-scale association analysis identifies new risk loci for coronary artery disease. Nature Genetics, 2013, 45, 25-33.	9.4	1,439
24	Genome-wide association analysis identifies 13 new risk loci for schizophrenia. Nature Genetics, 2013, 45, 1150-1159.	9.4	1,395
25	Common genetic determinants of vitamin D insufficiency: a genome-wide association study. Lancet, The, 2010, 376, 180-188.	6.3	1,385
26	Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. Nature Genetics, 2012, 44, 369-375.	9.4	1,338
27	Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. Nature Genetics, 2018, 50, 1505-1513.	9.4	1,331
28	New genetic loci link adipose and insulin biology to body fat distribution. Nature, 2015, 518, 187-196.	13.7	1,328
29	Association scan of 14,500 nonsynonymous SNPs in four diseases identifies autoimmunity variants. Nature Genetics, 2007, 39, 1329-1337.	9.4	1,298
30	Common variants near MC4R are associated with fat mass, weight and risk of obesity. Nature Genetics, 2008, 40, 768-775.	9.4	1,179
31	Genome-wide association study identifies eight loci associated with blood pressure. Nature Genetics, 2009, 41, 666-676.	9.4	1,104
32	Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility. Nature Genetics, 2014, 46, 234-244.	9.4	959
33	The genetic architecture of type 2 diabetes. Nature, 2016, 536, 41-47.	13.7	952
34	Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 12511-12516.	3.3	948
35	A large-scale genome-wide association study of Asian populations uncovers genetic factors influencing eight quantitative traits. Nature Genetics, 2009, 41, 527-534.	9.4	937
36	Causal relationships among the gut microbiome, short-chain fatty acids and metabolic diseases. Nature Genetics, 2019, 51, 600-605.	9.4	854

#	Article	IF	CITATIONS
37	Meta-analysis identifies 13 new loci associated with waist-hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution. Nature Genetics, 2010, 42, 949-960.	9.4	836
38	Genomics, Type 2 Diabetes, and Obesity. New England Journal of Medicine, 2010, 363, 2339-2350.	13.9	808
39	Identification of seven loci affecting mean telomere length and their association with disease. Nature Genetics, 2013, 45, 422-427.	9.4	808
40	Interaction between ERAP1 and HLA-B27 in ankylosing spondylitis implicates peptide handling in the mechanism for HLA-B27 in disease susceptibility. Nature Genetics, 2011, 43, 761-767.	9.4	778
41	Loci influencing lipid levels and coronary heart disease risk in 16 European population cohorts. Nature Genetics, 2009, 41, 47-55.	9.4	776
42	A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance. Nature Genetics, 2012, 44, 659-669.	9.4	762
43	Common variants associated with plasma triglycerides and risk for coronary artery disease. Nature Genetics, 2013, 45, 1345-1352.	9.4	754
44	Causal Relationship between Obesity and Vitamin D Status: Bi-Directional Mendelian Randomization Analysis of Multiple Cohorts. PLoS Medicine, 2013, 10, e1001383.	3.9	753
45	Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways. Nature Genetics, 2012, 44, 991-1005.	9.4	746
46	Epigenome-wide association study of body mass index, and the adverse outcomes of adiposity. Nature, 2017, 541, 81-86.	13.7	743
47	Genome-wide association analysis identifies 20 loci that influence adult height. Nature Genetics, 2008, 40, 575-583.	9.4	742
48	Genome-wide association study of CNVs in 16,000 cases of eight common diseases and 3,000 shared controls. Nature, 2010, 464, 713-720.	13.7	737
49	Mapping cis- and trans-regulatory effects across multiple tissues in twins. Nature Genetics, 2012, 44, 1084-1089.	9.4	701
50	Large-Scale Association Studies of Variants in Genes Encoding the Pancreatic Â-Cell KATP Channel Subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) Confirm That the KCNJ11 E23K Variant Is Associated With Type 2 Diabetes. Diabetes, 2003, 52, 568-572.	0.3	688
51	Genome-wide association analysis of metabolic traits in a birth cohort from a founder population. Nature Genetics, 2009, 41, 35-46.	9.4	676
52	Variants in MTNR1B influence fasting glucose levels. Nature Genetics, 2009, 41, 77-81.	9.4	662
53	Sequence variants at CHRNB3–CHRNA6 and CYP2A6 affect smoking behavior. Nature Genetics, 2010, 42, 448-453.	9.4	649
54	Epigenome-Wide Scans Identify Differentially Methylated Regions for Age and Age-Related Phenotypes in a Healthy Ageing Population. PLoS Genetics, 2012, 8, e1002629.	1.5	620

#	Article	IF	CITATIONS
55	An Expanded Genome-Wide Association Study of Type 2 Diabetes in Europeans. Diabetes, 2017, 66, 2888-2902.	0.3	615
56	Genetic variation in GIPR influences the glucose and insulin responses to an oral glucose challenge. Nature Genetics, 2010, 42, 142-148.	9.4	591
57	Genome-wide association study for early-onset and morbid adult obesity identifies three new risk loci in European populations. Nature Genetics, 2009, 41, 157-159.	9.4	585
58	Genome-wide meta-analysis identifies 11 new loci for anthropometric traits and provides insights into genetic architecture. Nature Genetics, 2013, 45, 501-512.	9.4	578
59	Meta-Analysis of 28,141 Individuals Identifies Common Variants within Five New Loci That Influence Uric Acid Concentrations. PLoS Genetics, 2009, 5, e1000504.	1.5	572
60	Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche. Nature, 2014, 514, 92-97.	13.7	548
61	Meta-analysis of genome-wide association studies identifies eight new loci for type 2 diabetes in east Asians. Nature Genetics, 2012, 44, 67-72.	9.4	545
62	Genetic Loci Associated With C-Reactive Protein Levels and Risk of Coronary Heart Disease. JAMA - Journal of the American Medical Association, 2009, 302, 37.	3.8	544
63	Rare and low-frequency coding variants alter human adult height. Nature, 2017, 542, 186-190.	13.7	544
64	Genome-wide association study identifies multiple loci influencing human serum metabolite levels. Nature Genetics, 2012, 44, 269-276.	9.4	516
65	Assessment of cumulative evidence on genetic associations: interim guidelines. International Journal of Epidemiology, 2008, 37, 120-132.	0.9	506
66	Genome-wide association study identifies loci influencing concentrations of liver enzymes in plasma. Nature Genetics, 2011, 43, 1131-1138.	9.4	501
67	Genome-wide association study of ulcerative colitis identifies three new susceptibility loci, including the HNF4A region. Nature Genetics, 2009, 41, 1330-1334.	9.4	483
68	Genome-wide association study in individuals of South Asian ancestry identifies six new type 2 diabetes susceptibility loci. Nature Genetics, 2011, 43, 984-989.	9.4	481
69	Pancreatic islet enhancer clusters enriched in type 2 diabetes risk-associated variants. Nature Genetics, 2014, 46, 136-143.	9.4	475
70	Exome-wide association study of plasma lipids in >300,000 individuals. Nature Genetics, 2017, 49, 1758-1766.	9.4	470
71	Bayesian refinement of association signals for 14 loci in 3 common diseases. Nature Genetics, 2012, 44, 1294-1301.	9.4	469
72	What makes a good genetic association study?. Lancet, The, 2005, 366, 1315-1323.	6.3	464

#	Article	IF	CITATIONS
73	Genomic inflation factors under polygenic inheritance. European Journal of Human Genetics, 2011, 19, 807-812.	1.4	460
74	Genome-Wide Association Scan Meta-Analysis Identifies Three Loci Influencing Adiposity and Fat Distribution. PLoS Genetics, 2009, 5, e1000508.	1.5	453
75	Integrative genomic analysis implicates limited peripheral adipose storage capacity in the pathogenesis of human insulin resistance. Nature Genetics, 2017, 49, 17-26.	9.4	452
76	The Metabochip, a Custom Genotyping Array for Genetic Studies of Metabolic, Cardiovascular, and Anthropometric Traits. PLoS Genetics, 2012, 8, e1002793.	1.5	448
77	A brief history of human disease genetics. Nature, 2020, 577, 179-189.	13.7	441
78	Loss-of-function mutations in SLC30A8 protect against type 2 diabetes. Nature Genetics, 2014, 46, 357-363.	9.4	428
79	Coding Variation in <i>ANGPTL4,LPL,</i> and <i>SVEP1</i> and the Risk of Coronary Disease. New England Journal of Medicine, 2016, 374, 1134-1144.	13.9	427
80	Genomic analyses identify hundreds of variants associated with age at menarche and support a role for puberty timing in cancer risk. Nature Genetics, 2017, 49, 834-841.	9.4	426
81	Improved Detection of Common Variants Associated with Schizophrenia by Leveraging Pleiotropy with Cardiovascular-Disease Risk Factors. American Journal of Human Genetics, 2013, 92, 197-209.	2.6	422
82	A Genome-Wide Association Study Identifies Protein Quantitative Trait Loci (pQTLs). PLoS Genetics, 2008, 4, e1000072.	1.5	415
83	Human β Cell Transcriptome Analysis Uncovers IncRNAs That Are Tissue-Specific, Dynamically Regulated, and Abnormally Expressed in Type 2 Diabetes. Cell Metabolism, 2012, 16, 435-448.	7.2	410
84	Genome-wide associations for birth weight and correlations with adult disease. Nature, 2016, 538, 248-252.	13.7	406
85	Maternal and fetal genetic effects on birth weight and their relevance to cardio-metabolic risk factors. Nature Genetics, 2019, 51, 804-814.	9.4	402
86	The Human Pancreatic Islet Transcriptome: Expression of Candidate Genes for Type 1 Diabetes and the Impact of Pro-Inflammatory Cytokines. PLoS Genetics, 2012, 8, e1002552.	1.5	398
87	Epigenome-wide association of DNA methylation markers in peripheral blood from Indian Asians and Europeans with incident type 2 diabetes: a nested case-control study. Lancet Diabetes and Endocrinology,the, 2015, 3, 526-534.	5.5	396
88	Mirror extreme BMI phenotypes associated with gene dosage at the chromosome 16p11.2 locus. Nature, 2011, 478, 97-102.	13.7	394
89	The Architecture of Gene Regulatory Variation across Multiple Human Tissues: The MuTHER Study. PLoS Genetics, 2011, 7, e1002003.	1.5	392
90	Common variants near ATM are associated with glycemic response to metformin in type 2 diabetes. Nature Genetics, 2011, 43, 117-120.	9.4	390

#	Article	IF	CITATIONS
91	Using an atlas of gene regulation across 44 human tissues to inform complex disease- and trait-associated variation. Nature Genetics, 2018, 50, 956-967.	9.4	389
92	Common Variants at 10 Genomic Loci Influence Hemoglobin A1C Levels via Glycemic and Nonglycemic Pathways. Diabetes, 2010, 59, 3229-3239.	0.3	387
93	Using human genetics to understand the disease impacts of testosterone in men and women. Nature Medicine, 2020, 26, 252-258.	15.2	384
94	FTO genotype is associated with phenotypic variability of body mass index. Nature, 2012, 490, 267-272.	13.7	383
95	A common variant of HMGA2 is associated with adult and childhood height in the general population. Nature Genetics, 2007, 39, 1245-1250.	9.4	373
96	Sex-stratified Genome-wide Association Studies Including 270,000 Individuals Show Sexual Dimorphism in Genetic Loci for Anthropometric Traits. PLoS Genetics, 2013, 9, e1003500.	1.5	371
97	Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci. Nature Genetics, 2015, 47, 1415-1425.	9.4	365
98	The genetics of blood pressure regulation and its target organs from association studies in 342,415 individuals. Nature Genetics, 2016, 48, 1171-1184.	9.4	362
99	Enabling the genomic revolution in Africa. Science, 2014, 344, 1346-1348.	6.0	361
100	Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes. Nature Genetics, 2018, 50, 559-571.	9.4	356
101	A genome-wide association meta-analysis identifies new childhood obesity loci. Nature Genetics, 2012, 44, 526-531.	9.4	352
102	Distribution and Medical Impact of Loss-of-Function Variants in the Finnish Founder Population. PLoS Genetics, 2014, 10, e1004494.	1.5	351
103	Novel insights into the genetics of smoking behaviour, lung function, and chronic obstructive pulmonary disease (UK BiLEVE): a genetic association study in UK Biobank. Lancet Respiratory Medicine,the, 2015, 3, 769-781.	5.2	346
104	Impact of common genetic determinants of Hemoglobin A1c on type 2 diabetes risk and diagnosis in ancestrally diverse populations: A transethnic genome-wide meta-analysis. PLoS Medicine, 2017, 14, e1002383.	3.9	341
105	Large-scale genome-wide meta-analysis of polycystic ovary syndrome suggests shared genetic architecture for different diagnosis criteria. PLoS Genetics, 2018, 14, e1007813.	1.5	341
106	The trans-ancestral genomic architecture of glycemic traits. Nature Genetics, 2021, 53, 840-860.	9.4	341
107	Concept, Design and Implementation of a Cardiovascular Gene-Centric 50 K SNP Array for Large-Scale Genomic Association Studies. PLoS ONE, 2008, 3, e3583.	1.1	339
108	Detection of human adaptation during the past 2000 years. Science, 2016, 354, 760-764.	6.0	336

#	Article	IF	CITATIONS
109	Genome-Wide Association Identifies Nine Common Variants Associated With Fasting Proinsulin Levels and Provides New Insights Into the Pathophysiology of Type 2 Diabetes. Diabetes, 2011, 60, 2624-2634.	0.3	335
110	Common variants in WFS1 confer risk of type 2 diabetes. Nature Genetics, 2007, 39, 951-953.	9.4	333
111	The Influence of Age and Sex on Genetic Associations with Adult Body Size and Shape: A Large-Scale Genome-Wide Interaction Study. PLoS Genetics, 2015, 11, e1005378.	1.5	331
112	Global Analysis of DNA Methylation Variation in Adipose Tissue from Twins Reveals Links to Disease-Associated Variants in Distal Regulatory Elements. American Journal of Human Genetics, 2013, 93, 876-890.	2.6	330
113	Genetic Predisposition to an Impaired Metabolism of the Branched-Chain Amino Acids and Risk of Type 2 Diabetes: A Mendelian Randomisation Analysis. PLoS Medicine, 2016, 13, e1002179.	3.9	324
114	Mapping of a gene for type 2 diabetes associated with an insulin secretion defect by a genome scan in Finnish families. Nature Genetics, 1996, 14, 90-94.	9.4	320
115	Rare MTNR1B variants impairing melatonin receptor 1B function contribute to type 2 diabetes. Nature Genetics, 2012, 44, 297-301.	9.4	319
116	Association of vitamin D status with arterial blood pressure and hypertension risk: a mendelian randomisation study. Lancet Diabetes and Endocrinology,the, 2014, 2, 719-729.	5.5	319
117	Genome-wide association of polycystic ovary syndrome implicates alterations in gonadotropin secretion in European ancestry populations. Nature Communications, 2015, 6, 7502.	5.8	314
118	The impact of low-frequency and rare variants on lipid levels. Nature Genetics, 2015, 47, 589-597.	9.4	310
119	Association Between Low-Density Lipoprotein Cholesterol–Lowering Genetic Variants and Risk of Type 2 Diabetes. JAMA - Journal of the American Medical Association, 2016, 316, 1383.	3.8	310
120	A Genomewide Scan for Loci Predisposing to Type 2 Diabetes in a U.K. Population (The Diabetes UK) Tj ETQq0 0 (Locus on Chromosome 1q. American Journal of Human Genetics, 2001, 69, 553-569.) rgBT /Ov 2.6	erlock 10 Tf . 300
121	Impact of Type 2 Diabetes Susceptibility Variants on Quantitative Glycemic Traits Reveals Mechanistic Heterogeneity. Diabetes, 2014, 63, 2158-2171.	0.3	297
122	Linkage and association of insulin gene VNTR regulatory polymorphism with polycystic ovary syndrome. Lancet, The, 1997, 349, 986-990.	6.3	295
123	Genome-wide association study in 79,366 European-ancestry individuals informs the genetic architecture of 25-hydroxyvitamin D levels. Nature Communications, 2018, 9, 260.	5.8	295
124	Trans-ancestry genome-wide association study identifies 12 genetic loci influencing blood pressure and implicates a role for DNA methylation. Nature Genetics, 2015, 47, 1282-1293.	9.4	294
125	New loci associated with birth weight identify genetic links between intrauterine growth and adult height and metabolism. Nature Genetics, 2013, 45, 76-82.	9.4	293
126	Genome-wide association studies: potential next steps on a genetic journey. Human Molecular Genetics, 2008, 17, R156-R165.	1.4	292

#	Article	IF	CITATIONS
127	Identification of an imprinted master trans regulator at the KLF14 locus related to multiple metabolic phenotypes. Nature Genetics, 2011, 43, 561-564.	9.4	289
128	Two New Loci for Body-Weight Regulation Identified in a Joint Analysis of Genome-Wide Association Studies for Early-Onset Extreme Obesity in French and German Study Groups. PLoS Genetics, 2010, 6, e1000916.	1.5	287
129	A coherent approach for analysis of the Illumina HumanMethylation450 BeadChip improves data quality and performance in epigenome-wide association studies. Genome Biology, 2015, 16, 37.	3.8	286
130	Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure in obesity. Nature Genetics, 2018, 50, 26-41.	9.4	286
131	Variation in <i>TCF7L2</i> Influences Therapeutic Response to Sulfonylureas. Diabetes, 2007, 56, 2178-2182.	0.3	284
132	Identification of type 2 diabetes loci in 433,540 East Asian individuals. Nature, 2020, 582, 240-245.	13.7	282
133	Assessing the Combined Impact of 18 Common Genetic Variants of Modest Effect Sizes on Type 2 Diabetes Risk. Diabetes, 2008, 57, 3129-3135.	0.3	279
134	Common Variation in the <i>FTO</i> Gene Alters Diabetes-Related Metabolic Traits to the Extent Expected Given Its Effect on BMI. Diabetes, 2008, 57, 1419-1426.	0.3	277
135	Genome-wide association analysis identifies three new susceptibility loci for childhood body mass index. Human Molecular Genetics, 2016, 25, 389-403.	1.4	275
136	Regulation of <i>Fto/Ftm</i> gene expression in mice and humans. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2008, 294, R1185-R1196.	0.9	270
137	Improving reporting standards for polygenic scores in risk prediction studies. Nature, 2021, 591, 211-219.	13.7	265
138	Gene expression changes with age in skin, adipose tissue, blood and brain. Genome Biology, 2013, 14, R75.	13.9	263
139	Trans-ancestry meta-analyses identify rare and common variants associated with blood pressure and hypertension. Nature Genetics, 2016, 48, 1151-1161.	9.4	261
140	Genome-wide association and genetic functional studies identify <i>autism susceptibility candidate 2</i> gene (<i>AUTS2</i>) in the regulation of alcohol consumption. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7119-7124.	3.3	258
141	Effect of predicted protein-truncating genetic variants on the human transcriptome. Science, 2015, 348, 666-669.	6.0	252
142	Multi-ancestry genetic study of type 2 diabetes highlights the power of diverse populations for discovery and translation. Nature Genetics, 2022, 54, 560-572.	9.4	250
143	Exome sequencing of 20,791Âcases of type 2 diabetes and 24,440Âcontrols. Nature, 2019, 570, 71-76.	13.7	248
144	Genetic loci influencing kidney function and chronic kidney disease. Nature Genetics, 2010, 42, 373-375.	9.4	246

#	Article	IF	CITATIONS
145	New loci for body fat percentage reveal link between adiposity and cardiometabolic disease risk. Nature Communications, 2016, 7, 10495.	5.8	245
146	Combining Information from Common Type 2 Diabetes Risk Polymorphisms Improves Disease Prediction. PLoS Medicine, 2006, 3, e374.	3.9	242
147	Association Analysis of 6,736 U.K. Subjects Provides Replication and ConfirmsTCF7L2as a Type 2 Diabetes Susceptibility Gene With a Substantial Effect on Individual Risk. Diabetes, 2006, 55, 2640-2644.	0.3	240
148	Large-Scale Gene-Centric Meta-Analysis across 39 Studies Identifies Type 2 Diabetes Loci. American Journal of Human Genetics, 2012, 90, 410-425.	2.6	239
149	Detailed Physiologic Characterization Reveals Diverse Mechanisms for Novel Genetic Loci Regulating Glucose and Insulin Metabolism in Humans. Diabetes, 2010, 59, 1266-1275.	0.3	237
150	Development of polycystic ovary syndrome: involvement of genetic and environmental factors. Journal of Developmental and Physical Disabilities, 2006, 29, 278-285.	3.6	234
151	Type 2 diabetes: new genes, new understanding. Trends in Genetics, 2008, 24, 613-621.	2.9	229
152	Common Variants of the Novel Type 2 Diabetes Genes <i>CDKAL1</i> and <i>HHEX/IDE</i> Are Associated With Decreased Pancreatic β-Cell Function. Diabetes, 2007, 56, 3101-3104.	0.3	226
153	A Bivariate Genome-Wide Approach to Metabolic Syndrome. Diabetes, 2011, 60, 1329-1339.	0.3	226
154	RNA Sequencing Identifies Dysregulation of the Human Pancreatic Islet Transcriptome by the Saturated Fatty Acid Palmitate. Diabetes, 2014, 63, 1978-1993.	0.3	226
155	Early Life Factors and Blood Pressure at Age 31 Years in the 1966 Northern Finland Birth Cohort. Hypertension, 2004, 44, 838-846.	1.3	223
156	Variants in ADCY5 and near CCNL1 are associated with fetal growth and birth weight. Nature Genetics, 2010, 42, 430-435.	9.4	223
157	Genetic Evidence for Causal Relationships Between Maternal Obesity-Related Traits and Birth Weight. JAMA - Journal of the American Medical Association, 2016, 315, 1129.	3.8	220
158	Mosaic PPM1D mutations are associated with predisposition to breast and ovarian cancer. Nature, 2013, 493, 406-410.	13.7	218
159	Genome-wide association study identifies variants in TMPRSS6 associated with hemoglobin levels. Nature Genetics, 2009, 41, 1170-1172.	9.4	217
160	Pharmacogenetic meta-analysis of genome-wide association studies of LDL cholesterol response to statins. Nature Communications, 2014, 5, 5068.	5.8	216
161	Integrated Genetic and Epigenetic Analysis Identifies Haplotype-Specific Methylation in the FTO Type 2 Diabetes and Obesity Susceptibility Locus. PLoS ONE, 2010, 5, e14040.	1.1	215
162	Systematic Evaluation of Pleiotropy Identifies 6 Further Loci Associated WithÂCoronary ArteryÂDisease. Journal of the American College of Cardiology, 2017, 69, 823-836.	1.2	214

#	Article	IF	CITATIONS
163	Responsible use of polygenic risk scores in the clinic: potential benefits, risks and gaps. Nature Medicine, 2021, 27, 1876-1884.	15.2	214
164	Genome-wide association studies in type 2 diabetes. Current Diabetes Reports, 2009, 9, 164-171.	1.7	213
165	Diabetes and Cause-Specific Mortality in Mexico City. New England Journal of Medicine, 2016, 375, 1961-1971.	13.9	207
166	Reduced Insulin Exocytosis in Human Pancreatic β-Cells With Gene Variants Linked to Type 2 Diabetes. Diabetes, 2012, 61, 1726-1733.	0.3	204
167	Precision Medicine in Diabetes: A Consensus Report From the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care, 2020, 43, 1617-1635.	4.3	204
168	Evidence that a locus for familial psoriasis maps to chromosome 4q. Nature Genetics, 1996, 14, 231-233.	9.4	203
169	Dissection of the genetics of Parkinson's disease identifies an additional association 5' of SNCA and multiple associated haplotypes at 17q21. Human Molecular Genetics, 2011, 20, 345-353.	1.4	202
170	Exposing the exposures responsible for type 2 diabetes and obesity. Science, 2016, 354, 69-73.	6.0	201
171	Remapping the Insulin Gene/IDDM2 Locus in Type 1 Diabetes. Diabetes, 2004, 53, 1884-1889.	0.3	198
172	A Genome-Wide Association Search for Type 2 Diabetes Genes in African Americans. PLoS ONE, 2012, 7, e29202.	1.1	197
173	Genetics meets proteomics: perspectives for large population-based studies. Nature Reviews Genetics, 2021, 22, 19-37.	7.7	196
174	Whole-Exome Sequencing Identifies Rare and Low-Frequency Coding Variants Associated with LDL Cholesterol. American Journal of Human Genetics, 2014, 94, 233-245.	2.6	193
175	Genetic Risk Scores for Diabetes Diagnosis and Precision Medicine. Endocrine Reviews, 2019, 40, 1500-1520.	8.9	192
176	The Genetic and Epigenetic Basis of Type 2 Diabetes and Obesity. Clinical Pharmacology and Therapeutics, 2012, 92, 707-715.	2.3	191
177	Stratifying Type 2 Diabetes Cases by BMI Identifies Genetic Risk Variants in LAMA1 and Enrichment for Risk Variants in Lean Compared to Obese Cases. PLoS Genetics, 2012, 8, e1002741.	1.5	190
178	Genome-wide association and longitudinal analyses reveal genetic loci linking pubertal height growth, pubertal timing and childhood adiposity. Human Molecular Genetics, 2013, 22, 2735-2747.	1.4	188
179	Meta-Analysis and a Large Association Study Confirm a Role for Calpain-10 Variation in Type 2 Diabetes Susceptibility. American Journal of Human Genetics, 2003, 73, 1208-1212.	2.6	180
180	Gene-Lifestyle Interaction and Type 2 Diabetes: The EPIC InterAct Case-Cohort Study. PLoS Medicine, 2014, 11, e1001647.	3.9	180

#	Article	IF	CITATIONS
181	Evaluation of Common Variants in the Six Known Maturity-Onset Diabetes of the Young (MODY) Genes for Association With Type 2 Diabetes. Diabetes, 2007, 56, 685-693.	0.3	178
182	The Role of Adiposity in Cardiometabolic Traits: A Mendelian Randomization Analysis. PLoS Medicine, 2013, 10, e1001474.	3.9	178
183	Transcript Expression Data from Human Islets Links Regulatory Signals from Genome-Wide Association Studies for Type 2 Diabetes and Glycemic Traits to Their Downstream Effectors. PLoS Genetics, 2015, 11, e1005694.	1.5	178
184	Genome-wide association study identifies novel genetic variants contributing to variation in blood metabolite levels. Nature Communications, 2015, 6, 7208.	5.8	178
185	The miRNA Profile of Human Pancreatic Islets and Beta-Cells and Relationship to Type 2 Diabetes Pathogenesis. PLoS ONE, 2013, 8, e55272.	1.1	178
186	Genetic evidence that raised sex hormone binding globulin (SHBG) levels reduce the risk of type 2 diabetes. Human Molecular Genetics, 2010, 19, 535-544.	1.4	176
187	Genome-Wide Association Study for Type 2 Diabetes in Indians Identifies a New Susceptibility Locus at 2q21. Diabetes, 2013, 62, 977-986.	0.3	173
188	Studies of Association between the Gene for Calpain-10 and Type 2 Diabetes Mellitus in the United Kingdom. American Journal of Human Genetics, 2001, 69, 544-552.	2.6	171
189	Trans-ethnic meta-regression of genome-wide association studies accounting for ancestry increases power for discovery and improves fine-mapping resolution. Human Molecular Genetics, 2017, 26, 3639-3650.	1.4	170
190	Genome-wide meta-analysis of 241,258 adults accounting for smoking behaviour identifies novel loci for obesity traits. Nature Communications, 2017, 8, 14977.	5.8	169
191	Genome-Wide Association Study Identifies a Novel Locus Contributing to Type 2 Diabetes Susceptibility in Sikhs of Punjabi Origin From India. Diabetes, 2013, 62, 1746-1755.	0.3	167
192	Painting a new picture of personalised medicine for diabetes. Diabetologia, 2017, 60, 793-799.	2.9	166
193	Association between Common Variation at the FTO Locus and Changes in Body Mass Index from Infancy to Late Childhood: The Complex Nature of Genetic Association through Growth and Development. PLoS Genetics, 2011, 7, e1001307.	1.5	165
194	Variation in the glucose transporter gene SLC2A2 is associated with glycemic response to metformin. Nature Genetics, 2016, 48, 1055-1059.	9.4	165
195	A Central Role for GRB10 in Regulation of Islet Function in Man. PLoS Genetics, 2014, 10, e1004235.	1.5	164
196	Exploring the Developmental Overnutrition Hypothesis Using Parental–Offspring Associations and FTO as an Instrumental Variable. PLoS Medicine, 2008, 5, e33.	3.9	162
197	Metabolic characteristics of women with polycystic ovaries and oligo-amenorrhoea but normal androgen levels: implications for the management of polycystic ovary syndrome. Clinical Endocrinology, 2007, 66, 070213054521008-???.	1.2	161
198	Human metabolic profiles are stably controlled by genetic and environmental variation. Molecular Systems Biology, 2011, 7, 525.	3.2	158

#	Article	IF	CITATIONS
199	Genome-wide physical activity interactions in adiposity ― A meta-analysis of 200,452 adults. PLoS Genetics, 2017, 13, e1006528.	1.5	158
200	Genome-wide association study of offspring birth weight in 86 577 women identifies five novel loci and highlights maternal genetic effects that are independent of fetal genetics. Human Molecular Genetics, 2018, 27, 742-756.	1.4	156
201	Global Adiposity Rather Than Abnormal Regional Fat Distribution Characterizes Women with Polycystic Ovary Syndrome. Journal of Clinical Endocrinology and Metabolism, 2008, 93, 999-1004.	1.8	154
202	Reduced-Function <i>SLC22A1</i> Polymorphisms Encoding Organic Cation Transporter 1 and Glycemic Response to Metformin: A GoDARTS Study. Diabetes, 2009, 58, 1434-1439.	0.3	153
203	Systematic Assessment of Etiology in Adults With a Clinical Diagnosis of Young-Onset Type 2 Diabetes Is a Successful Strategy for Identifying Maturity-Onset Diabetes of the Young. Diabetes Care, 2012, 35, 1206-1212.	4.3	153
204	Common Genetic Variants Highlight the Role of Insulin Resistance and Body Fat Distribution in Type 2 Diabetes, Independent of Obesity. Diabetes, 2014, 63, 4378-4387.	0.3	153
205	A Genome-Wide Association Meta-Analysis of Circulating Sex Hormone–Binding Globulin Reveals Multiple Loci Implicated in Sex Steroid Hormone Regulation. PLoS Genetics, 2012, 8, e1002805.	1.5	151
206	Exploiting the GTEx resources to decipher the mechanisms at GWAS loci. Genome Biology, 2021, 22, 49.	3.8	150
207	Large-scale GWAS identifies multiple loci for hand grip strength providing biological insights into muscular fitness. Nature Communications, 2017, 8, 16015.	5.8	149
208	Distinct Developmental Profile of Lower-Body Adipose Tissue Defines Resistance Against Obesity-Associated Metabolic Complications. Diabetes, 2014, 63, 3785-3797.	0.3	148
209	eVOC: A Controlled Vocabulary for Unifying Gene Expression Data. Genome Research, 2003, 13, 1222-1230.	2.4	144
210	Regulatory variants at KLF14 influence type 2 diabetes risk via a female-specific effect on adipocyte size and body composition. Nature Genetics, 2018, 50, 572-580.	9.4	143
211	Manifestations of Metabolic Syndrome After Hypertensive Pregnancy. Hypertension, 2004, 43, 825-831.	1.3	142
212	Tensor decomposition for multiple-tissue gene expression experiments. Nature Genetics, 2016, 48, 1094-1100.	9.4	142
213	A Genome-Wide Association Study of Diabetic Kidney Disease in Subjects With Type 2 Diabetes. Diabetes, 2018, 67, 1414-1427.	0.3	136
214	Type 2 Diabetes Risk Alleles Are Associated With Reduced Size at Birth. Diabetes, 2009, 58, 1428-1433.	0.3	135
215	Genome-Wide Association Study of Diabetic Kidney Disease Highlights Biology Involved in Glomerular Basement Membrane Collagen. Journal of the American Society of Nephrology: JASN, 2019, 30, 2000-2016.	3.0	135
216	Hormonal Profile of Women with Self-Reported Symptoms of Oligomenorrhea and/or Hirsutism: Northern Finland Birth Cohort 1966 Study. Journal of Clinical Endocrinology and Metabolism, 2003, 88, 141-147.	1.8	134

#	Article	IF	CITATIONS
217	A Genome-Wide Metabolic QTL Analysis in Europeans Implicates Two Loci Shaped by Recent Positive Selection. PLoS Genetics, 2011, 7, e1002270.	1.5	132
218	Genetic Determinants of Height Growth Assessed Longitudinally from Infancy to Adulthood in the Northern Finland Birth Cohort 1966. PLoS Genetics, 2009, 5, e1000409.	1.5	131
219	Whole-Genome Sequencing Coupled to Imputation Discovers Genetic Signals for Anthropometric Traits. American Journal of Human Genetics, 2017, 100, 865-884.	2.6	131
220	Common variants at 12q15 and 12q24 are associated with infant head circumference. Nature Genetics, 2012, 44, 532-538.	9.4	130
221	Glutamine Links Obesity to Inflammation in Human White Adipose Tissue. Cell Metabolism, 2020, 31, 375-390.e11.	7.2	128
222	Common variants at 6q22 and 17q21 are associated with intracranial volume. Nature Genetics, 2012, 44, 539-544.	9.4	126
223	The Power of Gene-Based Rare Variant Methods to Detect Disease-Associated Variation and Test Hypotheses About Complex Disease. PLoS Genetics, 2015, 11, e1005165.	1.5	124
224	The genetics of diabetic complications. Nature Reviews Nephrology, 2015, 11, 277-287.	4.1	124
225	Adolescent Manifestations of Metabolic Syndrome Among Children Born to Women With Gestational Diabetes in a General-Population Birth Cohort. American Journal of Epidemiology, 2009, 169, 1209-1215.	1.6	123
226	Adiposity as a cause of cardiovascular disease: a Mendelian randomization study. International Journal of Epidemiology, 2015, 44, 578-586.	0.9	123
227	Hnf1α (MODY3) Controls Tissue-Specific Transcriptional Programs and Exerts Opposed Effects on Cell Growth in Pancreatic Islets and Liver. Molecular and Cellular Biology, 2009, 29, 2945-2959.	1.1	122
228	Candidate genes in polycystic ovary syndrome. Human Reproduction Update, 2001, 7, 405-410.	5.2	120
229	Structural forms of the human amylase locus and their relationships to SNPs, haplotypes and obesity. Nature Genetics, 2015, 47, 921-925.	9.4	120
230	Cytotoxic T lymphocyte antigen-4 (CTLA-4) gene polymorphism confers susceptibility to thyroid associated orbitopathy. Lancet, The, 1999, 354, 743-744.	6.3	119
231	Mendelian Randomization Studies Do Not Support a Causal Role for Reduced Circulating Adiponectin Levels in Insulin Resistance and Type 2 Diabetes. Diabetes, 2013, 62, 3589-3598.	0.3	116
232	Type 2 Diabetes TCF7L2 Risk Genotypes Alter Birth Weight: A Study of 24,053 Individuals. American Journal of Human Genetics, 2007, 80, 1150-1161.	2.6	112
233	Insights Into the Molecular Mechanism for Type 2 Diabetes Susceptibility at the <i>KCNQ1</i> Locus From Temporal Changes in Imprinting Status in Human Islets. Diabetes, 2013, 62, 987-992.	0.3	112
234	TCF7L2: the biggest story in diabetes genetics since HLA?. Diabetologia, 2006, 50, 1-4.	2.9	110

#	Article	IF	CITATIONS
235	Learning From Molecular Genetics. Diabetes, 2008, 57, 2889-2898.	0.3	110
236	Growing evidence for diabetes susceptibility genes from genome scan data. Current Diabetes Reports, 2003, 3, 159-167.	1.7	109
237	Adiposity-Related Heterogeneity in Patterns of Type 2 Diabetes Susceptibility Observed in Genome-Wide Association Data. Diabetes, 2009, 58, 505-510.	0.3	109
238	A novel common variant in DCST2 is associated with length in early life and height in adulthood. Human Molecular Genetics, 2015, 24, 1155-1168.	1.4	109
239	Comprehensive Human Adipose Tissue mRNA and MicroRNA Endogenous Control Selection for Quantitative Realâ€Timeâ€PCR Normalization. Obesity, 2011, 19, 888-892.	1.5	108
240	MicroRNA-125a is over-expressed in insulin target tissues in a spontaneous rat model of Type 2 Diabetes. BMC Medical Genomics, 2009, 2, 54.	0.7	105
241	Glycosylation of Immunoglobulin G: Role of Genetic and Epigenetic Influences. PLoS ONE, 2013, 8, e82558.	1.1	105
242	miR-375 gene dosage in pancreatic β-cells: implications for regulation of β-cell mass and biomarker development. Journal of Molecular Medicine, 2015, 93, 1159-1169.	1.7	104
243	The Genetic Basis of Metabolic Disease. Cell, 2019, 177, 146-161.	13.5	104
244	Assessment of High-Sensitivity C-Reactive Protein Levels as Diagnostic Discriminator of Maturity-Onset Diabetes of the Young Due to <i>HNF1A</i> Mutations. Diabetes Care, 2010, 33, 1919-1924.	4.3	103
245	Association of Genetic Loci With Glucose Levels in Childhood and Adolescence. Diabetes, 2011, 60, 1805-1812.	0.3	103
246	Integration of human pancreatic islet genomic data refines regulatory mechanisms at Type 2 Diabetes susceptibility loci. ELife, 2018, 7, .	2.8	103
247	A Genome-Wide Association Study of IVGTT-Based Measures of First-Phase Insulin Secretion Refines the Underlying Physiology of Type 2 Diabetes Variants. Diabetes, 2017, 66, 2296-2309.	0.3	102
248	Precision medicine in diabetes: a Consensus Report from the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia, 2020, 63, 1671-1693.	2.9	102
249	An evaluation of HapMap sample size and tagging SNP performance in large-scale empirical and simulated data sets. Nature Genetics, 2005, 37, 1320-1322.	9.4	101
250	Heritability of variation in glycaemic response to metformin: a genome-wide complex trait analysis. Lancet Diabetes and Endocrinology,the, 2014, 2, 481-487.	5.5	101
251	The Genetic Landscape of Renal Complications in Type 1 Diabetes. Journal of the American Society of Nephrology: JASN, 2017, 28, 557-574.	3.0	101
252	An integrated epigenomic analysis for type 2 diabetes susceptibility loci in monozygotic twins. Nature Communications, 2014, 5, 5719.	5.8	100

#	Article	IF	CITATIONS
253	A genomic approach to therapeutic target validation identifies a glucose-lowering <i>GLP1R</i> variant protective for coronary heart disease. Science Translational Medicine, 2016, 8, 341ra76.	5.8	100
254	Genetic inactivation of ANGPTL4 improves glucose homeostasis and is associated with reduced risk of diabetes. Nature Communications, 2018, 9, 2252.	5.8	99
255	Mouse-Human Experimental Epigenetic Analysis Unmasks Dietary Targets and Genetic Liability for Diabetic Phenotypes. Cell Metabolism, 2015, 21, 138-149.	7.2	98
256	Increased 5α-Reductase Activity and Adrenocortical Drive in Women with Polycystic Ovary Syndrome. Journal of Clinical Endocrinology and Metabolism, 2009, 94, 3558-3566.	1.8	97
257	Mutations in <i>HNF1A</i> Result in Marked Alterations of Plasma Glycan Profile. Diabetes, 2013, 62, 1329-1337.	0.3	97
258	Metabolic Cardiovascular Disease Risk Factors in Women with Self-Reported Symptoms of Oligomenorrhea and/or Hirsutism: Northern Finland Birth Cohort 1966 Study. Journal of Clinical Endocrinology and Metabolism, 2004, 89, 2114-2118.	1.8	96
259	Progress in defining the molecular basis of type 2 diabetes mellitus through susceptibility-gene identification. Human Molecular Genetics, 2004, 13, 33R-41.	1.4	96
260	Loss of ZnT8 function protects against diabetes by enhanced insulin secretion. Nature Genetics, 2019, 51, 1596-1606.	9.4	96
261	Common Genetic Variation Near Melatonin Receptor <i>MTNR1B</i> Contributes to Raised Plasma Glucose and Increased Risk of Type 2 Diabetes Among Indian Asians and European Caucasians. Diabetes, 2009, 58, 2703-2708.	0.3	95
262	Identification and Functional Characterization of G6PC2 Coding Variants Influencing Glycemic Traits Define an Effector Transcript at the G6PC2-ABCB11 Locus. PLoS Genetics, 2015, 11, e1004876.	1.5	95
263	Novel loci for childhood body mass index and shared heritability with adult cardiometabolic traits. PLoS Genetics, 2020, 16, e1008718.	1.5	95
264	Large-Scale Analysis of the Relationship betweenCYP11APromoter Variation, Polycystic Ovarian Syndrome, and Serum Testosterone. Journal of Clinical Endocrinology and Metabolism, 2004, 89, 2408-2413.	1.8	93
265	Interrogating Type 2 Diabetes Genome-Wide Association Data Using a Biological Pathway-Based Approach. Diabetes, 2009, 58, 1463-1467.	0.3	93
266	Sex-biased genetic effects on gene regulation in humans. Genome Research, 2012, 22, 2368-2375.	2.4	92
267	Total Zinc Intake May Modify the Glucose-Raising Effect of a Zinc Transporter (SLC30A8) Variant: A 14-Cohort Meta-analysis. Diabetes, 2011, 60, 2407-2416.	0.3	91
268	Discovery of rare variants associated with blood pressure regulation through meta-analysis of 1.3 million individuals. Nature Genetics, 2020, 52, 1314-1332.	9.4	91
269	Prevalence of polycystic ovaries in women with androgenic alopecia. European Journal of Endocrinology, 2003, 149, 439-442.	1.9	90
270	Population whole-genome bisulfite sequencing across two tissues highlights the environment as the principal source of human methylome variation. Genome Biology, 2015, 16, 290.	3.8	90

#	Article	IF	CITATIONS
271	Assessing allele-specific expression across multiple tissues from RNA-seq read data. Bioinformatics, 2015, 31, 2497-2504.	1.8	90
272	A Global Overview of Precision Medicine in Type 2 Diabetes. Diabetes, 2018, 67, 1911-1922.	0.3	90
273	Meta-analysis and functional effects of the SLC30A8 rs13266634 polymorphism on isolated human pancreatic islets. Molecular Genetics and Metabolism, 2010, 100, 77-82.	0.5	89
274	Protein-coding variants implicate novel genes related to lipid homeostasis contributing to body-fat distribution. Nature Genetics, 2019, 51, 452-469.	9.4	89
275	Genetic variant effects on gene expression in human pancreatic islets and their implications for T2D. Nature Communications, 2020, 11, 4912.	5.8	89
276	Common Variants of the Hepatocyte Nuclear Factor-4Â P2 Promoter Are Associated With Type 2 Diabetes in the U.K. Population. Diabetes, 2004, 53, 3002-3006.	0.3	88
277	Identifying genes predisposing to atopic eczemaâ~†â~†â~†â~â~â~ Journal of Allergy and Clinical Immunology, 1066-1070.	1999, 104 1.5	' 87
278	LRP5 Regulates Human Body Fat Distribution by Modulating Adipose Progenitor Biology in a Dose- and Depot-Specific Fashion. Cell Metabolism, 2015, 21, 262-273.	7.2	87
279	Sex-dimorphic genetic effects and novel loci for fasting glucose and insulin variability. Nature Communications, 2021, 12, 24.	5.8	87
280	No Evidence of Association of ENPP1 Variants With Type 2 Diabetes or Obesity in a Study of 8,089 U.K. Caucasians. Diabetes, 2006, 55, 3175-3179.	0.3	86
281	GWAS on longitudinal growth traits reveals different genetic factors influencing infant, child, and adult BMI. Science Advances, 2019, 5, eaaw3095.	4.7	86
282	Association of the CpG Methylation Pattern of the Proximal Insulin Gene Promoter with Type 1 Diabetes. PLoS ONE, 2012, 7, e36278.	1.1	85
283	Characterization of functional methylomes by next-generation capture sequencing identifies novel disease-associated variants. Nature Communications, 2015, 6, 7211.	5.8	84
284	Associations of autozygosity with a broad range of human phenotypes. Nature Communications, 2019, 10, 4957.	5.8	84
285	The Presence of Methylation Quantitative Trait Loci Indicates a Direct Genetic Influence on the Level of DNA Methylation in Adipose Tissue. PLoS ONE, 2013, 8, e55923.	1.1	83
286	The prevalence of polycystic ovaries in women with a history of gestational diabetes. Clinical Endocrinology, 2000, 53, 501-507.	1.2	82
287	Genome-wide association study of sexual maturation in males and females highlights a role for body mass and menarche loci in male puberty. Human Molecular Genetics, 2014, 23, 4452-4464.	1.4	82
288	Association of vitamin D with risk of type 2 diabetes: A Mendelian randomisation study in European and Chinese adults. PLoS Medicine, 2018, 15, e1002566.	3.9	82

#	Article	IF	CITATIONS
289	Distinct Variants at LIN28B Influence Growth in Height from Birth to Adulthood. American Journal of Human Genetics, 2010, 86, 773-782.	2.6	81
290	Association of FTO variants with BMI and fat mass in the self-contained population of Sorbs in Germany. European Journal of Human Genetics, 2010, 18, 104-110.	1.4	81
291	Genome-wide association analyses highlight etiological differences underlying newly defined subtypes of diabetes. Nature Genetics, 2021, 53, 1534-1542.	9.4	81
292	Evidence of Inbreeding Depression on Human Height. PLoS Genetics, 2012, 8, e1002655.	1.5	79
293	Systematic Functional Characterization of Candidate Causal Genes for Type 2 Diabetes Risk Variants. Diabetes, 2016, 65, 3805-3811.	0.3	79
294	Genome-wide association study identifies 48 common genetic variants associated with handedness. Nature Human Behaviour, 2021, 5, 59-70.	6.2	79
295	An association study of bipolar mood disorder (type I) with the 5-HTTLPR serotonin transporter polymorphism in a human population isolate from Colombia. Neuroscience Letters, 2000, 292, 199-202.	1.0	78
296	Relationship between birthweight and blood lipid concentrations in later life: evidence from the existing literature. International Journal of Epidemiology, 2003, 32, 862-876.	0.9	78
297	Paradoxical Lower Serum Triglyceride Levels and Higher Type 2 Diabetes Mellitus Susceptibility in Obese Individuals with the PNPLA3 148M Variant. PLoS ONE, 2012, 7, e39362.	1.1	78
298	Understanding human fetal pancreas development using subpopulation sorting, RNA sequencing and single-cell profiling. Development (Cambridge), 2018, 145, .	1.2	78
299	Genetics of type 2 diabetes. Current Opinion in Genetics and Development, 2007, 17, 239-244.	1.5	77
300	Mendelian Randomization Studies Do Not Support a Role for Raised Circulating Triglyceride Levels Influencing Type 2 Diabetes, Glucose Levels, or Insulin Resistance. Diabetes, 2011, 60, 1008-1018.	0.3	77
301	Discovery and Fine-Mapping of Glycaemic and Obesity-Related Trait Loci Using High-Density Imputation. PLoS Genetics, 2015, 11, e1005230.	1.5	77
302	Endocrine-Exocrine Signaling Drives Obesity-Associated Pancreatic Ductal Adenocarcinoma. Cell, 2020, 181, 832-847.e18.	13.5	77
303	Ovarian Morphology Is a Marker of Heritable Biochemical Traits in Sisters with Polycystic Ovaries. Journal of Clinical Endocrinology and Metabolism, 2008, 93, 3396-3402.	1.8	76
304	A trans-ancestral meta-analysis of genome-wide association studies reveals loci associated with childhood obesity. Human Molecular Genetics, 2019, 28, 3327-3338.	1.4	76
305	Evaluating the Results of Genomewide Linkage Scans of Complex Traits by Locus Counting. American Journal of Human Genetics, 2002, 71, 1175-1182.	2.6	75
306	Variability of gene expression profiles in human blood and lymphoblastoid cell lines. BMC Genomics, 2010, 11, 96.	1.2	75

#	Article	IF	CITATIONS
307	Trans-ethnic study design approaches for fine-mapping. European Journal of Human Genetics, 2016, 24, 1330-1336.	1.4	75
308	Studying Gene and Gene-Environment Effects of Uncommon and Common Variants on Continuous Traits: A Marker-Set Approach Using Gene-Trait Similarity Regression. American Journal of Human Genetics, 2011, 89, 277-288.	2.6	74
309	Meta-Analysis Investigating Associations Between Healthy Diet and Fasting Glucose and Insulin Levels and Modification by Loci Associated With Glucose Homeostasis in Data From 15 Cohorts. American Journal of Epidemiology, 2013, 177, 103-115.	1.6	74
310	A principal component meta-analysis on multiple anthropometric traits identifies novel loci for body shape. Nature Communications, 2016, 7, 13357.	5.8	74
311	Genetics of Ovarian Disorders: Polycystic Ovary Syndrome. Reviews in Endocrine and Metabolic Disorders, 2004, 5, 69-76.	2.6	72
312	Association between the T-381C polymorphism of the brain natriuretic peptide gene and risk of type 2 diabetes in human populations. Human Molecular Genetics, 2007, 16, 1343-1350.	1.4	72
313	Casting a wider net for diabetes susceptibility genes. Nature Genetics, 2008, 40, 1039-1040.	9.4	72
314	Revisiting the Thrifty Gene Hypothesis via 65 Loci Associated with Susceptibility to Type 2 Diabetes. American Journal of Human Genetics, 2014, 94, 176-185.	2.6	72
315	Cohort Profile: East London Genes & Health (ELGH), a community-based population genomics and health study in British Bangladeshi and British Pakistani people. International Journal of Epidemiology, 2020, 49, 20-21i.	0.9	71
316	Analysis of Multiple Data Sets Reveals No Association between the Insulin Gene Variable Number Tandem Repeat Element and Polycystic Ovary Syndrome or Related Traits. Journal of Clinical Endocrinology and Metabolism, 2005, 90, 2988-2993.	1.8	70
317	A meta-analysis of four European genome screens (GIFT Consortium) shows evidence for a novel region on chromosome 17p11.2-q22 linked to type 2 diabetes. Human Molecular Genetics, 2003, 12, 1865-1873.	1.4	68
318	Genetic variations in the gene encoding TFAP2B are associated with type 2 diabetes mellitus. Journal of Human Genetics, 2005, 50, 283-292.	1.1	68
319	Nonfasting Glucose, Ischemic Heart Disease, and Myocardial Infarction. Journal of the American College of Cardiology, 2012, 59, 2356-2365.	1.2	67
320	Evaluating the Performance of Fine-Mapping Strategies at Common Variant GWAS Loci. PLoS Genetics, 2015, 11, e1005535.	1.5	67
321	Type 2 diabetes and obesity: genomics and the clinic. Human Genetics, 2011, 130, 41-58.	1.8	65
322	Genome-Wide Association Study Reveals Multiple Loci Associated with Primary Tooth Development during Infancy. PLoS Genetics, 2010, 6, e1000856.	1.5	64
323	Comparison of metabolic and inflammatory outcomes in women who used oral contraceptives and the levonorgestrel-releasing intrauterine device in a general population. American Journal of Obstetrics and Gynecology, 2008, 199, 529.e1-529.e10.	0.7	63
324	Underlying Genetic Models of Inheritance in Established Type 2 Diabetes Associations. American Journal of Epidemiology, 2009, 170, 537-545.	1.6	63

#	Article	IF	CITATIONS
325	Age- and Sex-Specific Causal Effects of Adiposity on Cardiovascular Risk Factors. Diabetes, 2015, 64, 1841-1852.	0.3	63
326	Meta-Analysis of the INSIG2 Association with Obesity Including 74,345 Individuals: Does Heterogeneity of Estimates Relate to Study Design?. PLoS Genetics, 2009, 5, e1000694.	1.5	62
327	Identification of 371 genetic variants for age at first sex and birth linked to externalising behaviour. Nature Human Behaviour, 2021, 5, 1717-1730.	6.2	62
328	Decreased STARD10 Expression Is Associated with Defective Insulin Secretion in Humans and Mice. American Journal of Human Genetics, 2017, 100, 238-256.	2.6	60
329	Insulin resistance and \hat{l}^2 -cell dysfunction in normoglycaemic European women with a history of gestational diabetes. Clinical Endocrinology, 2003, 59, 289-297.	1.2	59
330	Type 2 diabetes risk alleles in PAM impact insulin release from human pancreatic β-cells. Nature Genetics, 2018, 50, 1122-1131.	9.4	59
331	European lactase persistence genotype shows evidence of association with increase in body mass index. Human Molecular Genetics, 2010, 19, 1129-1136.	1.4	58
332	Human Genetics of Obesity and Type 2 Diabetes Mellitus. Circulation Genomic and Precision Medicine, 2018, 11, e002090.	1.6	58
333	Coexpression Network Analysis in Abdominal and Gluteal Adipose Tissue Reveals Regulatory Genetic Loci for Metabolic Syndrome and Related Phenotypes. PLoS Genetics, 2012, 8, e1002505.	1.5	57
334	The genetics of type 2 diabetes. Best Practice and Research in Clinical Endocrinology and Metabolism, 2001, 15, 293-308.	2.2	56
335	Optimization of Human Plasma ¹ H NMR Spectroscopic Data Processing for High-Throughput Metabolic Phenotyping Studies and Detection of Insulin Resistance Related to Type 2 Diabetes. Analytical Chemistry, 2008, 80, 7354-7362.	3.2	56
336	Genome-wide association study of type 2 diabetes in Africa. Diabetologia, 2019, 62, 1204-1211.	2.9	56
337	Association of Genetically Enhanced Lipoprotein Lipase–Mediated Lipolysis and Low-Density Lipoprotein Cholesterol–Lowering Alleles With Risk of Coronary Disease and Type 2 Diabetes. JAMA Cardiology, 2018, 3, 957.	3.0	55
338	Data sharing in large research consortia: experiences and recommendations from ENGAGE. European Journal of Human Genetics, 2014, 22, 317-321.	1.4	54
339	Formalising recall by genotype as an efficient approach to detailed phenotyping and causal inference. Nature Communications, 2018, 9, 711.	5.8	54
340	Multiethnic Genome-Wide Association Study of Diabetic Retinopathy Using Liability Threshold Modeling of Duration of Diabetes and Glycemic Control. Diabetes, 2019, 68, 441-456.	0.3	54
341	Further Evidence for a Susceptibility Locus on Chromosome 20q13.11 in Families with Dominant Transmission of Graves Disease. American Journal of Human Genetics, 1999, 65, 1462-1465.	2.6	53
342	Evidence for Linkage of Stature to Chromosome 3p26 in a Large U.K. Family Data Set Ascertained for Type 2 Diabetes. American Journal of Human Genetics, 2002, 70, 543-546.	2.6	53

#	Article	IF	CITATIONS
343	Genetic Variation in the Small Heterodimer Partner Gene and Young-Onset Type 2 Diabetes, Obesity, and Birth Weight in U.K. Subjects. Diabetes, 2003, 52, 1276-1279.	0.3	53
344	Contribution of common non-synonymous variants in PCSK1 to body mass index variation and risk of obesity: a systematic review and meta-analysis with evidence from up to 331 175 individuals. Human Molecular Genetics, 2015, 24, 3582-3594.	1.4	53
345	Association and Haplotype Analysis of the Insulin-Degrading Enzyme (IDE) Gene, a Strong Positional and Biological Candidate for Type 2 Diabetes Susceptibility. Diabetes, 2003, 52, 1300-1305.	0.3	52
346	Genome-wide association studies: past, present and future. Human Molecular Genetics, 2008, 17, R100-R101.	1.4	52
347	A powerful approach to subâ€phenotype analysis in populationâ€based genetic association studies. Genetic Epidemiology, 2010, 34, 335-343.	0.6	52
348	A genomeâ€wide association study suggests new evidence for an association of the <scp>NADPH</scp> Oxidase 4 (<i><scp>NOX</scp>4</i>) gene with severe diabetic retinopathy in type 2 diabetes. Acta Ophthalmologica, 2018, 96, e811-e819.	0.6	52
349	A Large-Scale Association Analysis of Common Variation of the HNF1Â Gene With Type 2 Diabetes in the U.K. Caucasian Population. Diabetes, 2005, 54, 2487-2491.	0.3	51
350	Re-sequencing Expands Our Understanding of the Phenotypic Impact of Variants at GWAS Loci. PLoS Genetics, 2014, 10, e1004147.	1.5	50
351	Use of Homozygosity Mapping to Identify a Region on Chromosome 1 Bearing a Defective Gene That Causes Autosomal Recessive Homozygous Hypercholesterolemia in Two Unrelated Families. American Journal of Human Genetics, 2001, 68, 653-660.	2.6	49
352	Variants in the fetal genome near pro-inflammatory cytokine genes on 2q13 associate with gestational duration. Nature Communications, 2019, 10, 3927.	5.8	49
353	Determinants of penetrance and variable expressivity in monogenic metabolic conditions across 77,184 exomes. Nature Communications, 2021, 12, 3505.	5.8	49
354	Extent, Causes, and Consequences of Small RNA Expression Variation in Human Adipose Tissue. PLoS Genetics, 2012, 8, e1002704.	1.5	48
355	New Blood Pressure–Associated Loci Identified in Meta-Analyses of 475 000 Individuals. Circulation: Cardiovascular Genetics, 2017, 10, .	5.1	48
356	The genetics of type 2 diabetes and its clinical relevance. Clinical Genetics, 2013, 83, 297-306.	1.0	47
357	Higher Magnesium Intake Is Associated with Lower Fasting Clucose and Insulin, with No Evidence of Interaction with Select Genetic Loci, in a Meta-Analysis of 15 CHARGE Consortium Studies. Journal of Nutrition, 2013, 143, 345-353.	1.3	47
358	Predicting and elucidating the etiology of fatty liver disease: A machine learning modeling and validation study in the IMI DIRECT cohorts. PLoS Medicine, 2020, 17, e1003149.	3.9	47
359	Amerind Ancestry, Socioeconomic Status and the Genetics of Type 2 Diabetes in a Colombian Population. PLoS ONE, 2012, 7, e33570.	1.1	47
360	Multi-ancestry genome-wide association study of gestational diabetes mellitus highlights genetic links with type 2 diabetes. Human Molecular Genetics, 2022, 31, 3377-3391.	1.4	47

#	Article	IF	CITATIONS
361	Sibâ€pair collection strategies for complex diseases. Genetic Epidemiology, 1998, 15, 317-340.	0.6	46
362	Mechanisms of Disease: genetic insights into the etiology of type 2 diabetes and obesity. Nature Clinical Practice Endocrinology and Metabolism, 2008, 4, 156-163.	2.9	46
363	MicroRNA Expression in Abdominal and Gluteal Adipose Tissue Is Associated with mRNA Expression Levels and Partly Genetically Driven. PLoS ONE, 2011, 6, e27338.	1.1	46
364	The Common p.R114W <i>HNF4A</i> Mutation Causes a Distinct Clinical Subtype of Monogenic Diabetes. Diabetes, 2016, 65, 3212-3217.	0.3	46
365	Large-scale studies of the association between variation at the TNF/LTA locus and susceptibility to type 2 diabetes. Diabetologia, 2005, 48, 2013-2017.	2.9	45
366	Variation at the Insulin Gene VNTR (Variable Number Tandem Repeat) Polymorphism and Early Growth: Studies in a Large Finnish Birth Cohort. Diabetes, 2004, 53, 2126-2131.	0.3	44
367	Plasma Fucosylated Glycans and C-Reactive Protein as Biomarkers of HNF1A-MODY in Young Adult–Onset Nonautoimmune Diabetes. Diabetes Care, 2019, 42, 17-26.	4.3	44
368	The Variable Number of Tandem Repeats Upstream of the Insulin Gene Is a Susceptibility Locus for Latent Autoimmune Diabetes in Adults. Diabetes, 2006, 55, 1890-1894.	0.3	43
369	Variation in the Plasma Membrane Monoamine Transporter (PMAT) (Encoded by <i>SLC29A4</i>) and Organic Cation Transporter 1 (OCT1) (Encoded by <i>SLC22A1</i>) and Gastrointestinal Intolerance to Metformin in Type 2 Diabetes: An IMI DIRECT Study. Diabetes Care, 2019, 42, 1027-1033.	4.3	43
370	The South Asian Genome. PLoS ONE, 2014, 9, e102645.	1.1	43
371	Serum Levels of Retinol-Binding Protein 4 and Adiponectin in Women with Polycystic Ovary Syndrome: Associations with Visceral Fat But No Evidence for Fat Mass-Independent Effects on Pathogenesis in This Condition. Journal of Clinical Endocrinology and Metabolism, 2008, 93, 2859-2865.	1.8	42
372	Genetic Predisposition to Type 2 Diabetes and Risk of Subclinical Atherosclerosis and Cardiovascular Diseases Among 160,000 Chinese Adults. Diabetes, 2019, 68, 2155-2164.	0.3	42
373	Evidence From a Large U.K. Family Collection That Genes Influencing Age of Onset of Type 2 Diabetes Map to Chromosome 12p and to the MODY3/NIDDM2 Locus on 12q24. Diabetes, 2004, 53, 855-860.	0.3	41
374	Association Studies of Insulin Receptor Substrate 1 Gene (IRS1) Variants in Type 2 Diabetes Samples Enriched for Family History and Early Age of Onset. Diabetes, 2004, 53, 3319-3322.	0.3	41
375	Ghrelin levels are suppressed and show a blunted response to oral glucose in women with polycystic ovary syndrome European Journal of Endocrinology, 2008, 158, 511-516.	1.9	41
376	Expression of Phosphofructokinase in Skeletal Muscle Is Influenced by Genetic Variation and Associated With Insulin Sensitivity. Diabetes, 2014, 63, 1154-1165.	0.3	41
377	Evaluation of type 2 diabetes genetic risk variants in Chinese adults: findings from 93,000 individuals from the China Kadoorie Biobank. Diabetologia, 2016, 59, 1446-1457.	2.9	41
378	Effects of apolipoprotein B on lifespan and risks of major diseases including type 2 diabetes: a mendelian randomisation analysis using outcomes in first-degree relatives. The Lancet Healthy Longevity, 2021, 2, e317-e326.	2.0	41

#	Article	IF	CITATIONS
379	Correlation of rare coding variants in the gene encoding human glucokinase regulatory protein with phenotypic, cellular, and kinetic outcomes. Journal of Clinical Investigation, 2012, 122, 205-217.	3.9	41
380	Large-scale association analysis of TNF/LTA gene region polymorphisms in type 2 diabetes. BMC Medical Genetics, 2010, 11, 69.	2.1	40
381	Genetic variation associated with thyroid autoimmunity shapes the systemic immune response to PD-1 checkpoint blockade. Nature Communications, 2021, 12, 3355.	5.8	40
382	Contribution of 32 GWAS-Identified Common Variants to Severe Obesity in European Adults Referred for Bariatric Surgery. PLoS ONE, 2013, 8, e70735.	1.1	39
383	Human islet function following 20Âyears of cryogenic biobanking. Diabetologia, 2015, 58, 1503-1512.	2.9	39
384	Four groups of type 2 diabetes contribute to the etiological and clinical heterogeneity in newly diagnosed individuals: An IMI DIRECT study. Cell Reports Medicine, 2022, 3, 100477.	3.3	39
385	Weighing in on diabetes risk. Nature Genetics, 1998, 19, 209-210.	9.4	38
386	Loss-of-Function Mutations in the Cell-Cycle Control Gene <i>CDKN2A</i> Impact on Glucose Homeostasis in Humans. Diabetes, 2016, 65, 527-533.	0.3	38
387	Burden of Diabetes and First Evidence for the Utility of HbA1c for Diagnosis and Detection of Diabetes in Urban Black South Africans: The Durban Diabetes Study. PLoS ONE, 2016, 11, e0161966.	1.1	38
388	Genetics of polycystic ovary syndrome. Molecular and Cellular Endocrinology, 1998, 145, 123-128.	1.6	37
389	New methods for finding disease-susceptibility genes: impact and potential. Genome Biology, 2003, 4, 119.	13.9	37
390	Variation Within the Gene Encoding the Upstream Stimulatory Factor 1 Does Not Influence Susceptibility to Type 2 Diabetes in Samples From Populations With Replicated Evidence of Linkage to Chromosome 1q. Diabetes, 2006, 55, 2541-2548.	0.3	37
391	Population-Specific Risk of Type 2 Diabetes Conferred by HNF4A P2 Promoter Variants: A Lesson for Replication Studies. Diabetes, 2008, 57, 3161-3165.	0.3	37
392	Evaluation of Serum 1,5 Anhydroglucitol Levels as a Clinical Test to Differentiate Subtypes of Diabetes. Diabetes Care, 2010, 33, 252-257.	4.3	37
393	Epigenetic silencing of <i>HNF1A</i> associates with changes in the composition of the human plasma <i>N</i> -glycome. Epigenetics, 2012, 7, 164-172.	1.3	37
394	Patterns of ovarian morphology in polycystic ovary syndrome: a study utilising magnetic resonance imaging. European Radiology, 2010, 20, 1207-1213.	2.3	36
395	Validation of Plasma Biomarker Candidates for the Prediction of eGFR Decline in Patients With Type 2 Diabetes. Diabetes Care, 2018, 41, 1947-1954.	4.3	36
396	Common Variation in the LMNA Gene (Encoding Lamin A/C) and Type 2 Diabetes: Association Analyses in 9,518 Subjects. Diabetes, 2007, 56, 879-883.	0.3	34

#	Article	IF	CITATIONS
397	Detailed Investigation of the Role of Common and Low-Frequency <i>WFS1</i> Variants in Type 2 Diabetes Risk. Diabetes, 2010, 59, 741-746.	0.3	34
398	Genome-Wide Association Scan Allowing for Epistasis in Type 2 Diabetes. Annals of Human Genetics, 2011, 75, 10-19.	0.3	34
399	Homogeneity in the association of body mass index with type 2 diabetes across the UK Biobank: A Mendelian randomization study. PLoS Medicine, 2019, 16, e1002982.	3.9	34
400	RSPO3 impacts body fat distribution and regulates adipose cell biology in vitro. Nature Communications, 2020, 11, 2797.	5.8	34
401	Developing a network view of type 2 diabetes risk pathways through integration of genetic, genomic and functional data. Genome Medicine, 2019, 11, 19.	3.6	33
402	Metabolite ratios as potential biomarkers for type 2 diabetes: a DIRECT study. Diabetologia, 2018, 61, 117-129.	2.9	32
403	Activating Transcription Factor 6 (ATF6) Sequence Polymorphisms in Type 2 Diabetes and Pre-Diabetic Traits. Diabetes, 2007, 56, 856-862.	0.3	31
404	Sequence data and association statistics from 12,940 type 2 diabetes cases and controls. Scientific Data, 2017, 4, 170179.	2.4	31
405	Analysis of Differentiation Protocols Defines a Common Pancreatic Progenitor Molecular Signature and Guides Refinement of Endocrine Differentiation. Stem Cell Reports, 2020, 14, 138-153.	2.3	31
406	Linkage Disequilibrium Mapping of the Replicated Type 2 Diabetes Linkage Signal on Chromosome 1q. Diabetes, 2009, 58, 1704-1709.	0.3	30
407	Life-Course Analysis of a Fat Mass and Obesity-Associated (FTO) Gene Variant and Body Mass Index in the Northern Finland Birth Cohort 1966 Using Structural Equation Modeling. American Journal of Epidemiology, 2010, 172, 653-665.	1.6	30
408	A variant within the FTO confers susceptibility to diabetic nephropathy in Japanese patients with type 2 diabetes. PLoS ONE, 2018, 13, e0208654.	1.1	30
409	Genetic studies of diabetes following the advent of the genome-wide association study: where do we go from here?. Diabetologia, 2007, 50, 2229-2233.	2.9	29
410	A role for coding functional variants in HNF4A in type 2 diabetes susceptibility. Diabetologia, 2011, 54, 111-119.	2.9	29
411	A Genome-Wide Screen for Interactions Reveals a New Locus on 4p15 Modifying the Effect of Waist-to-Hip Ratio on Total Cholesterol. PLoS Genetics, 2011, 7, e1002333.	1.5	29
412	Integrative analysis of prognostic biomarkers derived from multiomics panels helps discrimination of chronic kidney disease trajectories in people with type 2 diabetes. Kidney International, 2019, 96, 1381-1388.	2.6	29
413	A novel rare CUBN variant and three additional genes identified in Europeans with and without diabetes: results from an exome-wide association study of albuminuria. Diabetologia, 2019, 62, 292-305.	2.9	29
414	Variants implicated in cortisone reductase deficiency do not contribute to susceptibility to common forms of polycystic ovary syndrome. Clinical Endocrinology, 2006, 65, 64-70.	1.2	28

#	Article	IF	CITATIONS
415	How Can Genetic Studies Help Us to Understand Links Between Birth Weight and Type 2 Diabetes?. Current Diabetes Reports, 2017, 17, 22.	1.7	28
416	Evaluating the contribution of rare variants to type 2 diabetes and related traits using pedigrees. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 379-384.	3.3	28
417	Evaluation of Association of HNF1B Variants with Diverse Cancers: Collaborative Analysis of Data from 19 Genome-Wide Association Studies. PLoS ONE, 2010, 5, e10858.	1.1	28
418	Deep learning models predict regulatory variants in pancreatic islets and refine type 2 diabetes association signals. ELife, 2020, 9, .	2.8	28
419	An effector index to predict target genes at GWAS loci. Human Genetics, 2022, 141, 1431-1447.	1.8	28
420	Analysis of the contribution to type 2 diabetes susceptibility of sequence variation in the gene encoding stearoyl-CoA desaturase, a key regulator of lipid and carbohydrate metabolism. Diabetologia, 2004, 47, 2168-2175.	2.9	27
421	Polymorphisms in the Glucokinase-Associated, Dual-Specificity Phosphatase 12 (DUSP12) Gene Under Chromosome 1q21 Linkage Peak Are Associated With Type 2 Diabetes. Diabetes, 2006, 55, 2631-2639.	0.3	27
422	A System for Information Management in BioMedical Studies—SIMBioMS. Bioinformatics, 2009, 25, 2768-2769.	1.8	27
423	Harmonising and linking biomedical and clinical data across disparate data archives to enable integrative cross-biobank research. European Journal of Human Genetics, 2016, 24, 521-528.	1.4	27
424	Genetics of type 2 diabetes mellitus and obesity—a review. Annals of Medicine, 2008, 40, 2-10.	1.5	26
425	Higher chylomicron remnants and LDL particle numbers associate with CD36 SNPs and DNA methylation sites that reduce CD36. Journal of Lipid Research, 2016, 57, 2176-2184.	2.0	26
426	Characterising <i>cis</i> -regulatory variation in the transcriptome of histologically normal and tumour-derived pancreatic tissues. Gut, 2018, 67, 521-533.	6.1	26
427	The Early Growth Genetics (EGG) and EArly Genetics and Lifecourse Epidemiology (EAGLE) consortia: design, results and future prospects. European Journal of Epidemiology, 2019, 34, 279-300.	2.5	26
428	A Multi-tissue Transcriptome Analysis of Human Metabolites Guides Interpretability of Associations Based on Multi-SNP Models for Gene Expression. American Journal of Human Genetics, 2020, 106, 188-201.	2.6	26
429	Bone mineral density and risk of type 2 diabetes and coronary heart disease: A Mendelian randomization study. Wellcome Open Research, 2017, 2, 68.	0.9	26
430	DOLORisk: study protocol for a multi-centre observational study to understand the risk factors and determinants of neuropathic pain. Wellcome Open Research, 2018, 3, 63.	0.9	26
431	Unsupervised Clustering of Missense Variants in HNF1A Using Multidimensional Functional Data Aids Clinical Interpretation. American Journal of Human Genetics, 2020, 107, 670-682.	2.6	25
432	The circadian rhythm of leptin is preserved in growth hormone deficient hypopituitary adults. Clinical Endocrinology, 1998, 48, 685-690.	1.2	24

#	Article	IF	CITATIONS
433	The genetics of type 2 diabetes. British Journal of Clinical Pharmacology, 2001, 51, 195-199.	1.1	24
434	Significant Linkage of BMI to Chromosome 10p in the U.K. Population and Evaluation of GAD2 as a Positional Candidate. Diabetes, 2006, 55, 1884-1889.	0.3	24
435	PASSIM–an open source software system for managing information in biomedical studies. BMC Bioinformatics, 2007, 8, 52.	1.2	24
436	Association Analysis of 29,956 Individuals Confirms That a Low-Frequency Variant at <i>CCND2</i> Halves the Risk of Type 2 Diabetes by Enhancing Insulin Secretion. Diabetes, 2015, 64, 2279-2285.	0.3	24
437	Genome-Wide Association Study of Peripheral Artery Disease. Circulation Genomic and Precision Medicine, 2021, 14, e002862.	1.6	24
438	Rare coding variants in 35 genes associate with circulating lipid levels—A multi-ancestry analysis of 170,000 exomes. American Journal of Human Genetics, 2022, 109, 81-96.	2.6	24
439	Examining the relationships between the Pro12Ala variant in PPARG and Type 2 diabetes-related traits in UK samples. Diabetic Medicine, 2005, 22, 1696-1700.	1.2	23
440	Genome-wide association scans for Type 2 diabetes: new insights into biology and therapy. Trends in Pharmacological Sciences, 2007, 28, 598-601.	4.0	23
441	Variation across the allele frequency spectrum. Nature Genetics, 2010, 42, 648-650.	9.4	23
442	Genetic architecture of circulating lipid levels. European Journal of Human Genetics, 2011, 19, 813-819.	1.4	23
443	Silencing of Atp2b1 increases blood pressure through vasoconstriction. Journal of Hypertension, 2013, 31, 1575-1583.	0.3	23
444	Human disease genomics: from variants to biology. Genome Biology, 2017, 18, 20.	3.8	23
445	A Multi-omic Integrative Scheme Characterizes Tissues of Action at Loci Associated with Type 2 Diabetes. American Journal of Human Genetics, 2020, 107, 1011-1028.	2.6	23
446	Derivation and molecular characterization of pancreatic differentiated MODY1-iPSCs. Stem Cell Research, 2018, 31, 16-26.	0.3	22
447	Discovery of biomarkers for glycaemic deterioration before and after the onset of type 2 diabetes: descriptive characteristics of the epidemiological studies within the IMI DIRECT Consortium. Diabetologia, 2019, 62, 1601-1615.	2.9	22
448	No association between insulin gene variation and adult metabolic phenotypes in a large Finnish birth cohort. Diabetologia, 2005, 48, 886-891.	2.9	21
449	Exploring the unknown: assumptions about allelic architecture and strategies for susceptibility variant discovery. Genome Medicine, 2009, 1, 66.	3.6	21
450	TCF7L2 and Diabetes: A Tale of Two Tissues, and of Two Species. Cell Metabolism, 2013, 17, 157-159.	7.2	21

#	Article	IF	CITATIONS
451	Insights into islet development and biology through characterization of a human iPSC-derived endocrine pancreas model. Islets, 2016, 8, 83-95.	0.9	21
452	Transancestral fine-mapping of four type 2 diabetes susceptibility loci highlights potential causal regulatory mechanisms. Human Molecular Genetics, 2016, 25, 2070-2081.	1.4	21
453	Exome-Derived Adiponectin-Associated Variants Implicate Obesity and Lipid Biology. American Journal of Human Genetics, 2019, 105, 15-28.	2.6	21
454	Sex Differences in the Risk of Coronary Heart Disease Associated With Type 2 Diabetes: A Mendelian Randomization Analysis. Diabetes Care, 2021, 44, 556-562.	4.3	21
455	Identification of genetic effects underlying type 2 diabetes in South Asian and European populations. Communications Biology, 2022, 5, 329.	2.0	21
456	Epistasis Between Type 2 Diabetes Susceptibility Loci on Chromosomes 1q21-25 and 10q23-26 in Northern Europeans. Annals of Human Genetics, 2006, 70, 726-737.	0.3	20
457	Analysis of overlapping genetic association in type 1 and type 2 diabetes. Diabetologia, 2021, 64, 1342-1347.	2.9	20
458	DOLORisk: study protocol for a multi-centre observational study to understand the risk factors and determinants of neuropathic pain. Wellcome Open Research, 2018, 3, 63.	0.9	20
459	The Genetics of Non-insulin-dependent Diabetes Mellitus in South India: An Overview. Annals of Medicine, 1992, 24, 491-497.	1.5	19
460	Ethnic variation in the activity of lipid desaturases and their relationships with cardiovascular risk factors in control women and an at-risk group with previous gestational diabetes mellitus: a cross-sectional study. Lipids in Health and Disease, 2013, 12, 25.	1.2	19
461	Analysis with the exome array identifies multiple new independent variants in lipid loci. Human Molecular Genetics, 2016, 25, 4094-4106.	1.4	19
462	Genome-wide association analysis of type 2 diabetes in the EPIC-InterAct study. Scientific Data, 2020, 7, 393.	2.4	19
463	NKX6.1 induced pluripotent stem cell reporter lines for isolation and analysis of functionally relevant neuronal and pancreas populations. Stem Cell Research, 2018, 29, 220-231.	0.3	18
464	Integration of questionnaire-based risk factors improves polygenic risk scores for human coronary heart disease and type 2 diabetes. Communications Biology, 2022, 5, 158.	2.0	18
465	The functional "KL-VS" variant of KLOTHO is not associated with type 2 diabetes in 5028 UK Caucasians. BMC Medical Genetics, 2006, 7, 51.	2.1	17
466	Paraoxonase 2 (PON2) polymorphisms and development of renal dysfunction in type 2 diabetes: UKPDS 76. Diabetologia, 2006, 49, 2892-2899.	2.9	17
467	Genetics of type 2 diabetes. Current Diabetes Reports, 2006, 6, 147-154.	1.7	17
468	Relationship between E23K (an established type II diabetes-susceptibility variant within KCNJ11), polycystic ovary syndrome and androgen levels. European Journal of Human Genetics, 2007, 15, 679-684.	1.4	17

#	Article	IF	CITATIONS
469	Dorothy Hodgkin Lecture 2010^. From hype to hope? A journey through the genetics of Type 2 diabetes. Diabetic Medicine, 2011, 28, 132-140.	1.2	17
470	Determinants of dyslipidaemia in probands with polycystic ovary syndrome and their sisters. Clinical Endocrinology, 2011, 74, 714-719.	1.2	17
471	Global Analysis of DNA Methylation Variation in Adipose Tissue from Twins Reveals Links to Disease-Associated Variants in Distal Regulatory Elements. American Journal of Human Genetics, 2013, 93, 1158.	2.6	17
472	Genomic medicine at the heart of diabetes management. Diabetologia, 2015, 58, 1725-1729.	2.9	17
473	Profiles of Glucose Metabolism in Different Prediabetes Phenotypes, Classified by Fasting Glycemia, 2-Hour OGTT, Glycated Hemoglobin, and 1-Hour OGTT: An IMI DIRECT Study. Diabetes, 2021, 70, 2092-2106.	0.3	17
474	Maturity onset diabetes of the young due to HNF1A variants in Croatia. Biochemia Medica, 2018, 28, 020703.	1.2	17
475	Detailed Analysis of Variation at and around Mitochondrial Position 16189 in a Large Finnish Cohort Reveals No Significant Associations with Early Growth or Metabolic Phenotypes at Age 31 Years. Journal of Clinical Endocrinology and Metabolism, 2007, 92, 3219-3223.	1.8	16
476	Metabolic Profiling in Maturity-Onset Diabetes of the Young (MODY) and Young Onset Type 2 Diabetes Fails to Detect Robust Urinary Biomarkers. PLoS ONE, 2012, 7, e40962.	1.1	16
477	BMI-Associated Alleles Do Not Constitute Risk Alleles for Polycystic Ovary Syndrome Independently of BMI: A Case-Control Study. PLoS ONE, 2014, 9, e87335.	1.1	16
478	Dissecting features of epigenetic variants underlying cardiometabolic risk using full-resolution epigenome profiling in regulatory elements. Nature Communications, 2019, 10, 1209.	5.8	16
479	Processes Underlying Glycemic Deterioration in Type 2 Diabetes: An IMI DIRECT Study. Diabetes Care, 2021, 44, 511-518.	4.3	16
480	Association of Genetic Variant at Chromosome 12q23.1 With Neuropathic Pain Susceptibility. JAMA Network Open, 2021, 4, e2136560.	2.8	16
481	No evidence that established type 2 diabetes susceptibility variants in the PPARG and KCNJ11 genes have pleiotropic effects on early growth. Diabetologia, 2007, 51, 82-85.	2.9	15
482	Genes Associated with Pancreas Development and Function Maintain Open Chromatin in iPSCs Generated from Human Pancreatic Beta Cells. Stem Cell Reports, 2017, 9, 1395-1405.	2.3	15
483	The value of genetic risk scores in precision medicine for diabetes. Expert Review of Precision Medicine and Drug Development, 2018, 3, 279-281.	0.4	15
484	Elevation of soluble E-selectin levels following gestational diabetes is restricted to women with persistent abnormalities of glucose regulation. Clinical Endocrinology, 2002, 56, 335-340.	1.2	14
485	Family-based analysis of tumor necrosis factor and lymphotoxin-α tag polymorphisms with type 1 diabetes in the population of South Croatia. Human Immunology, 2009, 70, 195-199.	1.2	14
486	The Importance of Global Studies of the Genetics of Type 2 Diabetes. Diabetes and Metabolism Journal, 2011, 35, 91.	1.8	14

#	Article	IF	CITATIONS
487	SAIL—a software system for sample and phenotype availability across biobanks and cohorts. Bioinformatics, 2011, 27, 589-591.	1.8	14
488	Patterns of differential gene expression in a cellular model of human islet development, and relationship to type 2 diabetes predisposition. Diabetologia, 2018, 61, 1614-1622.	2.9	14
489	Evaluating human genetic support for hypothesized metabolic disease genes. Cell Metabolism, 2022, 34, 661-666.	7.2	14
490	Current Developments in the Molecular Genetics of the Polycystic Ovary Syndrome. Trends in Endocrinology and Metabolism, 1998, 9, 51-54.	3.1	13
491	Assessment of the Role of Common Genetic Variation in the Transient Neonatal Diabetes Mellitus (TNDM) Region in Type 2 Diabetes: A Comparative Genomic and Tagging Single Nucleotide Polymorphism Approach. Diabetes, 2006, 55, 2272-2276.	0.3	13
492	Fostering improved human islet research: a European perspective. Diabetologia, 2019, 62, 1514-1516.	2.9	13
493	Common maternal and fetal genetic variants show expected polygenic effects on risk of small- or large-for-gestational-age (SGA or LGA), except in the smallest 3% of babies. PLoS Genetics, 2020, 16, e1009191.	1.5	13
494	High-density haplotype structure and association testing of the insulin-degrading enzyme (IDE) gene with type 2 diabetes in 4,206 people. Diabetes, 2006, 55, 128-35.	0.3	13
495	How useful is the fine-scale mapping of complex trait linkage peaks? Evaluating the impact of additional microsatellite genotyping on the posterior probability of linkage. Genetic Epidemiology, 2005, 28, 1-10.	0.6	12
496	Sustained endogenous glucose production, diminished lipolysis and non-esterified fatty acid appearance and oxidation in non-obese women at high risk of type 2 diabetes. European Journal of Endocrinology, 2006, 155, 469-476.	1.9	12
497	Assessing association between protein truncating variants and quantitative traits. Bioinformatics, 2013, 29, 2419-2426.	1.8	12
498	The role of physical activity in metabolic homeostasis before and after the onset of type 2 diabetes: an IMI DIRECT study. Diabetologia, 2020, 63, 744-756.	2.9	12
499	Polygenic Prediction of Type 2 Diabetes in Africa. Diabetes Care, 2022, 45, 717-723.	4.3	12
500	Identification of Rare Loss-of-Function Genetic Variation Regulating Body Fat Distribution. Journal of Clinical Endocrinology and Metabolism, 2022, 107, 1065-1077.	1.8	12
501	PLOS Genetics Data Sharing Policy: In Pursuit of Functional Utility. PLoS Genetics, 2015, 11, e1005716.	1.5	10
502	Will the real disease gene please stand up?. BMC Genetics, 2005, 6, S66.	2.7	9
503	Rapid testing of geneâ€gene interactions in genomeâ€wide association studies of binary and quantitative phenotypes. Genetic Epidemiology, 2011, 35, 800-808.	0.6	9
504	A null mutation in ANGPTL8 does not associate with either plasma glucose or type 2 diabetes in humans. BMC Endocrine Disorders, 2016, 16, 7.	0.9	9

#	Article	IF	CITATIONS
505	Biological and translational insights from T2DM genetics. Nature Reviews Endocrinology, 2017, 13, 71-72.	4.3	9
506	Toppar: an interactive browser for viewing association study results. Bioinformatics, 2018, 34, 1922-1924.	1.8	9
507	Mendelian randomization analysis does not support causal associations of birth weight with hypertension risk and blood pressure in adulthood. European Journal of Epidemiology, 2020, 35, 685-697.	2.5	9
508	Integrative network analysis highlights biological processes underlying GLP-1 stimulated insulin secretion: A DIRECT study. PLoS ONE, 2018, 13, e0189886.	1.1	9
509	Application of eVOC: controlled vocabularies for unifying gene expression data. Comptes Rendus - Biologies, 2003, 326, 1089-1096.	0.1	8
510	Making the right associations. Diabetologia, 2005, 48, 1241-1243.	2.9	8
511	Evaluation of Common Type 2 Diabetes Risk Variants in a South Asian Population of Sri Lankan Descent. PLoS ONE, 2014, 9, e98608.	1.1	8
512	Whole-genome sequencing to understand the genetic architecture of common gene expression and biomarker phenotypes. Human Molecular Genetics, 2015, 24, 1504-1512.	1.4	8
513	Whole blood co-expression modules associate with metabolic traits and type 2 diabetes: an IMI-DIRECT study. Genome Medicine, 2020, 12, 109.	3.6	8
514	Multifaceted genome-wide study identifies novel regulatory loci in SLC22A11 and ZNF45 for body mass index in Indians. Molecular Genetics and Genomics, 2020, 295, 1013-1026.	1.0	8
515	Examining the Candidacy of Ghrelin as a Gene Responsible for Variation in Adult Stature in a United Kingdom Population with Type 2 Diabetes. Journal of Clinical Endocrinology and Metabolism, 2007, 92, 2201-2204.	1.8	7
516	Public health research in Europe: SPHERE and the Nordic countries. Scandinavian Journal of Public Health, 2008, 36, 225-227.	1.2	7
517	Childhood cognitive ability moderates later-life manifestation of type 2 diabetes genetic risk Health Psychology, 2015, 34, 915-919.	1.3	7
518	Large-Scale Analyses Provide No Evidence for Gene-Gene Interactions Influencing Type 2 Diabetes Risk. Diabetes, 2020, 69, 2518-2522.	0.3	7
519	Post-load glucose subgroups and associated metabolic traits in individuals with type 2 diabetes: An IMI-DIRECT study. PLoS ONE, 2020, 15, e0242360.	1.1	7
520	Can Surgeons Assess CT Suitability for Endovascular Repair (EVAR) in Ruptured Abdominal Aortic Aneurysm? Implications for a Ruptured EVAR Trial. CardioVascular and Interventional Radiology, 2008, 31, 865-869.	0.9	6
521	What Will Genome-Wide Association Studies Mean to the Clinical Endocrinologist?. Journal of Clinical Endocrinology and Metabolism, 2009, 94, 2245-2246.	1.8	6
522	Metabolic and reproductive characteristics of first-degree relatives of women with self-reported oligo-amenorrhoea and hirsutism. Gynecological Endocrinology, 2011, 27, 630-635.	0.7	6

#	Article	IF	CITATIONS
523	A Protein Domain and Family Based Approach to Rare Variant Association Analysis. PLoS ONE, 2016, 11, e0153803.	1.1	6
524	Variation at the IRF2 Gene and Susceptibility to Psoriasis in Chromosome 4q-Linked Families. Journal of Investigative Dermatology, 2004, 122, 640-643.	0.3	5
525	Genetic Predisposition to Coronary Artery Disease in Type 2 Diabetes Mellitus. Circulation Genomic and Precision Medicine, 2020, 13, e002769.	1.6	5
526	Genome-Wide Association Analysis of Pancreatic Beta-Cell Glucose Sensitivity. Journal of Clinical Endocrinology and Metabolism, 2021, 106, 80-90.	1.8	5
527	Low Frequency Variants in the Exons Only Encoding Isoform A of HNF1A Do Not Contribute to Susceptibility to Type 2 Diabetes. PLoS ONE, 2009, 4, e6615.	1.1	5
528	Large-Scale Gene-Centric Meta-Analysis across 39 Studies Identifies Type 2 Diabetes Loci. American Journal of Human Genetics, 2012, 90, 753.	2.6	4
529	Altered cortisol metabolism in individuals with HNF1Aâ€MODY. Clinical Endocrinology, 2020, 93, 269-279.	1.2	4
530	The Importance of Context: Uncovering Species- and Tissue-Specific Effects of Genetic Risk Variants for Type 2 Diabetes. Frontiers in Endocrinology, 2016, 7, 112.	1.5	3
531	Dietary metabolite profiling brings new insight into the relationship between nutrition and metabolic risk: An IMI DIRECT study. EBioMedicine, 2020, 58, 102932.	2.7	3
532	HIV infection and anaemia do not affect HbA 1c for the detection of diabetes in black South Africans: Evidence from the Durban Diabetes Study. Diabetic Medicine, 2021, 38, e14605.	1.2	3
533	Genetics for Endocrinologists: The Molecular Genetic Basis of Endocrine Disorders. Clinical Endocrinology, 2003, 59, 826-826.	1.2	2
534	GANESH: Software for Customized Annotation of Genome Regions. Genome Research, 2003, 13, 2195-2202.	2.4	2
535	Type 1 and type 2 diabetes—chalk and cheese?. Diabetologia, 2009, 52, 1983-1986.	2.9	2
536	Genome-Wide Association Studies of Obesity. , 2014, , 33-53.		2
537	Metabolic Cardiovascular Disease Risk Factors in Women With Self-Reported Symptoms of Oligomenorrhea and/or Hirsutism: Northern Finland Birth Cohort 1966 Study. Obstetrical and Gynecological Survey, 2005, 60, 37-39.	0.2	1
538	Ovarian Morphology Is a Marker of Heritable Biochemical Traits in Sisters With Polycystic Ovaries. Obstetrical and Gynecological Survey, 2009, 64, 166-167.	0.2	1
539	Disease gene candidacy and ESTs. , 2005, , .		0
540	Type 2 diabetes mellitus. , 0, , 344-358.		0

#	Article	IF	CITATIONS
541	Reply to Dlouha et al. European Journal of Human Genetics, 2010, 18, 1275-1275.	1.4	Ο
542	Common Genetic Determinants of Vitamin D Insufficiency: A Genome-Wide Association Study. Obstetrical and Gynecological Survey, 2011, 66, 91-93.	0.2	0
543	Recent Developments in the Genetic and Genomic Basis of Type 2 Diabetes. Current Cardiovascular Risk Reports, 2013, 7, 66-72.	0.8	0
544	Insights into �-Cell Biology and Type 2 Diabetes Pathogenesis from Studies of the Islet Transcriptome. Frontiers in Diabetes, 2014, , 111-121.	0.4	0
545	Genome-Wide Association Studies in Type 2 Diabetes. Frontiers in Diabetes, 2014, , 1-13.	0.4	0
546	Type 2 diabetes. , 2009, , 326-336.		0
547	Title is missing!. , 2020, 17, e1003149.		0
548	Title is missing!. , 2020, 17, e1003149.		0
549	Title is missing!. , 2020, 17, e1003149.		0
550	Title is missing!. , 2020, 17, e1003149.		0
551	Title is missing!. , 2020, 17, e1003149.		0
552	Title is missing!. , 2019, 16, e1002982.		0
553	Title is missing!. , 2019, 16, e1002982.		0
554	Title is missing!. , 2019, 16, e1002982.		0
555	Title is missing!. , 2019, 16, e1002982.		0
556	Title is missing!. , 2019, 16, e1002982.		0
557	Identifying Susceptibility Variants for Type 2 Diabetes. , 0, , 235-250.		0