Ming Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4498896/publications.pdf

Version: 2024-02-01

154	6,512	45	75
papers	citations	h-index	g-index
155	155	155	6005 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Giant Electric Field Tuning of Magnetic Properties in Multiferroic Ferrite/Ferroelectric Heterostructures. Advanced Functional Materials, 2009, 19, 1826-1831.	7.8	387
2	Recent advances in synthesis and surface modification of lanthanide-doped upconversion nanoparticles for biomedical applications. Biotechnology Advances, 2012, 30, 1551-1561.	6.0	285
3	Ultrahigh Energy Storage Performance of Leadâ€Free Oxide Multilayer Film Capacitors via Interface Engineering. Advanced Materials, 2017, 29, 1604427.	11.1	247
4	Strategies to achieve high performance piezoelectric nanogenerators. Nano Energy, 2019, 55, 288-304.	8.2	219
5	Voltageâ€Impulseâ€Induced Nonâ€Volatile Ferroelastic Switching of Ferromagnetic Resonance for Reconfigurable Magnetoelectric Microwave Devices. Advanced Materials, 2013, 25, 4886-4892.	11.1	202
6	Quantification of strain and charge co-mediated magnetoelectric coupling on ultra-thin Permalloy/PMN-PT interface. Scientific Reports, 2014, 4, 3688.	1.6	184
7	Distance-Dependent Plasmon-Enhanced Fluorescence of Upconversion Nanoparticles using Polyelectrolyte Multilayers as Tunable Spacers. Scientific Reports, 2015, 5, 7779.	1.6	171
8	Soft magnetism, magnetostriction, and microwave properties of FeGaB thin films. Applied Physics Letters, 2007, 91, .	1.5	150
9	Non-volatile ferroelastic switching of the Verwey transition and resistivity of epitaxial Fe3O4/PMN-PT (011). Scientific Reports, 2013, 3, 1876.	1.6	150
10	Eâ€Field Control of Exchange Bias and Deterministic Magnetization Switching in AFM/FM/FE Multiferroic Heterostructures. Advanced Functional Materials, 2011, 21, 2593-2598.	7.8	149
11	Electrostatically tunable magnetoelectric inductors with large inductance tunability. Applied Physics Letters, 2009, 94, .	1.5	142
12	Electrical tuning of magnetism in Fe3O4/PZN–PT multiferroic heterostructures derived by reactive magnetron sputtering. Journal of Applied Physics, 2010, 107, .	1.1	126
13	Synthesis of ordered arrays of multiferroic NiFe2O4-Pb(Zr0.52Ti0.48)O3 core-shell nanowires. Applied Physics Letters, 2007, 90, 152501.	1.5	118
14	Flexible Quasi-Two-Dimensional CoFe ₂ O ₄ Epitaxial Thin Films for Continuous Strain Tuning of Magnetic Properties. ACS Nano, 2017, 11, 8002-8009.	7.3	111
15	Significantly enhanced energy storage density with superior thermal stability by optimizing Ba(Zr0.15Ti0.85)O3/Ba(Zr0.35Ti0.65)O3 multilayer structure. Nano Energy, 2018, 51, 539-545.	8.2	108
16	Electric field modulation of magnetoresistance in multiferroic heterostructures for ultralow power electronics. Applied Physics Letters, 2011, 98, .	1.5	100
17	Giant microwave tunability in FeGaB/lead magnesium niobate-lead titanate multiferroic composites. Applied Physics Letters, 2008, 92, .	1.5	99
18	Epitaxial Liftâ€Off of Centimeterâ€Scaled Spinel Ferrite Oxide Thin Films for Flexible Electronics. Advanced Materials, 2017, 29, 1702411.	11.1	97

#	Article	IF	CITATIONS
19	High-performance BaZr _{0.35} Ti _{0.65} O ₃ thin film capacitors with ultrahigh energy storage density and excellent thermal stability. Journal of Materials Chemistry A, 2018, 6, 12291-12297.	5.2	96
20	Charge transfer and interfacial magnetism in (LaNiO3)n/(LaMnO3)2superlattices. Physical Review B, 2013, 88, .	1.1	93
21	Deterministic Switching of Perpendicular Magnetic Anisotropy by Voltage Control of Spin Reorientation Transition in (Co/Pt) ₃ /Pb(Mg _{1/3} Nb _{2/3})O ₃ –PbTiO ₃ Multiferroic Heterostructures, ACS Nano, 2017, 11, 4337-4345.	7.3	91
22	Recent advances in multiferroic oxide heterostructures and devices. Journal of Materials Chemistry C, 2016, 4, 234-243.	2.7	87
23	Probing electric field control of magnetism using ferromagnetic resonance. Nature Communications, 2015, 6, 6082.	5.8	85
24	All-Inorganic Flexible Embedded Thin-Film Capacitors for Dielectric Energy Storage with High Performance. ACS Applied Materials & Samp; Interfaces, 2019, 11, 5247-5255.	4.0	81
25	A modified sol-gel process for multiferroic nanocomposite films. Journal of Applied Physics, 2007, 102,	1.1	78
26	Voltage impulse induced bistable magnetization switching in multiferroic heterostructures. Applied Physics Letters, 2012, 100, .	1.5	76
27	Large Energy Density, Excellent Thermal Stability, and High Cycling Endurance of Lead-Free BaZr _{0.2} Ti _{0.8} O ₃ Film Capacitors. ACS Applied Materials & amp; Interfaces, 2017, 9, 17096-17101.	4.0	76
28	Flexible lead-free oxide film capacitors with ultrahigh energy storage performances in extremely wide operating temperature. Nano Energy, 2019, 57, 519-527.	8.2	75
29	Giant magnetoelectric coupling and E-field tunability in a laminated Ni2MnGa/lead-magnesium-niobate-lead titanate multiferroic heterostructure. Applied Physics Letters, 2008, 93, 112502.	1.5	73
30	Quantitative Determination on Ionicâ€Liquidâ€Gating Control of Interfacial Magnetism. Advanced Materials, 2017, 29, 1606478.	11.1	72
31	Voltage Control of Metal-insulator Transition and Non-volatile Ferroelastic Switching of Resistance in VOx/PMN-PT Heterostructures. Scientific Reports, 2014, 4, 5931.	1.6	67
32	Electrically induced enormous magnetic anisotropy in Terfenol-D/lead zinc niobate-lead titanate multiferroic heterostructures. Journal of Applied Physics, 2012, 112, .	1.1	59
33	Electrostatic tuning of ferromagnetic resonance and magnetoelectric interactions in ferrite-piezoelectric heterostructures grown by chemical vapor deposition. Applied Physics Letters, 2011, 99, .	1.5	58
34	Mechanical Strainâ€Tunable Microwave Magnetism in Flexible CuFe ₂ O ₄ Epitaxial Thin Film for Wearable Sensors. Advanced Functional Materials, 2018, 28, 1705928.	7.8	58
35	Interface Engineered BaTiO ₃ /SrTiO ₃ Heterostructures with Optimized High-Frequency Dielectric Properties. ACS Applied Materials & Samp; Interfaces, 2012, 4, 5761-5765.	4.0	57
36	Interfacial charge-mediated non-volatile magnetoelectric coupling in Co0.3Fe0.7/Ba0.6Sr0.4TiO3/Nb:SrTiO3 multiferroic heterostructures. Scientific Reports, 2015, 5, 7740.	1.6	56

#	Article	IF	CITATIONS
37	Low-Voltage Control of (Co/Pt) < sub > <i> x < /i > Perpendicular Magnetic Anisotropy Heterostructure for Flexible Spintronics. ACS Nano, 2018, 12, 7167-7173.</i>	7.3	53
38	Interface thickness optimization of lead-free oxide multilayer capacitors for high-performance energy storage. Journal of Materials Chemistry A, 2018, 6, 1858-1864.	5.2	52
39	Self-assembled magnetic nanowire arrays. Applied Physics Letters, 2007, 90, 103105.	1.5	50
40	Electronically Tunable Miniaturized Antennas on Magnetoelectric Substrates With Enhanced Performance. IEEE Transactions on Magnetics, 2008, 44, 3091-3094.	1.2	49
41	Strong magnetoelectric coupling in ferrite/ferroelectric multiferroic heterostructures derived by low temperature spin-spray deposition. Journal Physics D: Applied Physics, 2009, 42, 045007.	1.3	49
42	Electrically controlled non-volatile switching of magnetism in multiferroic heterostructures via engineered ferroelastic domain states. NPG Asia Materials, 2016, 8, e316-e316.	3.8	48
43	Discovery of Enhanced Magnetoelectric Coupling through Electric Field Control of Two-Magnon Scattering within Distorted Nanostructures. ACS Nano, 2017, 11, 9286-9293.	7.3	48
44	Recent progress on flexible inorganic single-crystalline functional oxide films for advanced electronics. Materials Horizons, 2019, 6, 911-930.	6.4	46
45	Multilayer ceramic film capacitors for high-performance energy storage: progress and outlook. Journal of Materials Chemistry A, 2021, 9, 9462-9480.	5.2	46
46	Enhanced energy density with a wide thermal stability in epitaxial Pb0.92La0.08Zr0.52Ti0.48O3 thin films. Applied Physics Letters, 2016, 109, .	1.5	45
47	Realization of high energy density in an ultra-wide temperature range through engineering of ferroelectric sandwich structures. Nano Energy, 2019, 62, 725-733.	8.2	42
48	Giant Magnetoresistance and Anomalous Magnetic Properties of Highly Epitaxial Ferromagnetic LaBaCo ₂ O _{5.5+Î} Thin Films on (001) MgO. ACS Applied Materials & Thir Films on (001), 4, 5524-5528.	4.0	41
49	Modulation of Spin Dynamics via Voltage Control of Spin‣attice Coupling in Multiferroics. Advanced Functional Materials, 2017, 27, 1605598.	7.8	40
50	ALD preparation of high-k HfO ₂ thin films with enhanced energy density and efficient electrostatic energy storage. RSC Advances, 2017, 7, 8388-8393.	1.7	39
51	Phase stability and B-site ordering in La2NiMnO6 thin films. Applied Physics Letters, 2016, 109, .	1.5	36
52	Spin-spray deposited multiferroic composite Ni0.23Fe2.77O4â^•Pb(Zr,Ti)O3 with strong interface adhesion. Applied Physics Letters, 2008, 92, .	1.5	35
53	RF Magnetic Properties of FeCoB/Al\$_{2}\$O\$_{3}\$/FeCoB Structure With Varied Al\$_{2}\$O\$_{3}\$ Thickness. IEEE Transactions on Magnetics, 2011, 47, 3104-3107.	1.2	35
54	Enhanced Energy Storage Performance of Lead-Free Capacitors in an Ultrawide Temperature Range <i>via</i> Engineering Paraferroelectric and Relaxor Ferroelectric Multilayer Films. ACS Applied Materials & Diterfaces, 2020, 12, 25930-25937.	4.0	35

#	Article	IF	Citations
55	Spin-spray deposited NiZn-Ferrite films exhibiting μr′ > 50 at GHz range. Journal of Applied P 2011, 109, .	hysics,	32
56	Strain-tunable magnetic properties of epitaxial lithium ferrite thin film on MgAl ₂ O ₄ substrates. Journal of Materials Chemistry C, 2015, 3, 5598-5602.	2.7	31
57	Enhanced bending-tuned magnetic properties in epitaxial cobalt ferrite nanopillar arrays on flexible substrates. Materials Horizons, 2018, 5, 230-239.	6.4	31
58	Equivalence of direct and converse magnetoelectric coefficients in strain-coupled two-phase systems. Applied Physics Letters, 2012, 100, .	1.5	30
59	Voltage Tunable Magnetoelectric Inductors With Improved Operational Frequency and Quality Factor for Power Electronics. IEEE Transactions on Magnetics, 2015, 51, 1-5.	1.2	30
60	Well-ordered ZnO nanotube arrays and networks grown by atomic layer deposition. Applied Surface Science, 2015, 340, 120-125.	3.1	30
61	Loading effects of self-biased magnetic films on patch antennas with substrate/superstrate sandwich structure. IET Microwaves, Antennas and Propagation, 2010, 4, 1172.	0.7	29
62	Recent progress on the fabrication and applications of flexible ferroelectric devices. Journal of Materials Chemistry C, 2020, 8, 14-27.	2.7	29
63	Perspectives of voltage control for magnetic exchange bias in multiferroic heterostructures. Physics Letters, Section A: General, Atomic and Solid State Physics, 2017, 381, 1213-1222.	0.9	28
64	Dual H- and E-Field Tunable Multiferroic Bandpass Filter at ${m K}_{U}$ Band Using Partially Magnetized Spinel Ferrites. IEEE Transactions on Magnetics, 2013, 49, 5485-5488.	1.2	27
65	Antiferroelectric Materials, Applications and Recent Progress on Multiferroic Heterostructures. Spin, 2015, 05, 1530001.	0.6	27
66	Strong Nonvolatile Magnon-Driven Magnetoelectric Coupling in Single-Crystal Co/[PbMg1/3Nb2/3O3]0.71[PbTiO3]0.29 Heterostructures. Physical Review Applied, 2018, 9, .	1.5	27
67	Electric field induced reversible 180° magnetization switching through tuning of interfacial exchange bias along magnetic easy-axis in multiferroic laminates. Scientific Reports, 2015, 5, 16480.	1.6	26
68	Integration of Both Invariable and Tunable Microwave Magnetisms in a Single Flexible La _{0.67} Sr _{0.33} MnO ₃ Thin Film. ACS Applied Materials & Samp; Interfaces, 2019, 11, 22677-22683.	4.0	26
69	Tunable magnetoresistance devices based on multiferroic heterostructures. Journal of Applied Physics, 2011, 109, 07D913.	1.1	24
70	Non-Volatile Ferroelectric Switching of Ferromagnetic Resonance in NiFe/PLZT Multiferroic Thin Film Heterostructures. Scientific Reports, 2016, 6, 32408.	1.6	23
71	High In-Plane Magnetic Anisotropy and Microwave Frequency Performance of Soft Magnetic (Fe $_{50}\$ Co $_{50}\$ 1-{m x}} $(Al_{2}\$ 0, = 3} $)_{m x}$ Films Prepared by Modified Composition Gradient Sputtering. IEEE Transactions on Magnetics, 2011, 47, 3935-3938.	1.2	22
72	Ferroelectric Phase Transition Induced a Large FMR Tuning in Self-Assembled BaTiO ₃ 56 ₅ 12 Multiferroic Composites. ACS Applied Materials & Distriction (1988) Applied Materials & Dis	4.0	22

#	Article	IF	Citations
73	A Strategy to Modulate the Bending Coupled Microwave Magnetism in Nanoscale Epitaxial Lithium Ferrite for Flexible Spintronic Devices. Advanced Science, 2018, 5, 1800855.	5.6	22
74	The memory effect of magnetoelectric coupling in FeGaB/NiTi/PMN-PT multiferroic heterostructure. Scientific Reports, 2016, 6, 20450.	1.6	21
75	Multiferroic heterostructures of Fe3O4/PMN-PT prepared by atomic layer deposition for enhanced interfacial magnetoelectric couplings. Applied Physics Letters, 2017, 110, .	1.5	21
76	Controlling the Dirac point voltage of graphene by mechanically bending the ferroelectric gate of a graphene field effect transistor. Materials Horizons, 2019, 6, 302-310.	6.4	21
77	Atomic Scale Understanding of the Epitaxy of Perovskite Oxides on Flexible Mica Substrate. Advanced Materials Interfaces, 2020, 7, 1901265.	1.9	21
78	Microwave Frequency Performance and High Magnetic Anisotropy of \${m Fe}_{70}{m Co}_{30}-{m B}\$ Films Prepared by a Modified Composition Gradient Sputtering. IEEE Transactions on Magnetics, 2012, 48, 4313-4316.	1.2	20
79	Enhanced dielectric nonlinearity in epitaxial Pb0.92La0.08Zr0.52Ti0.48O3 thin films. Applied Physics Letters, 2014, 104, .	1.5	20
80	Atomic layer deposition of superparamagnetic and ferrimagnetic magnetite thin films. Journal of Applied Physics, $2015,117,117$	1.1	20
81	Review on nanomaterials synthesized by vapor transport method: growth and their related applications. RSC Advances, 2015, 5, 79249-79263.	1.7	20
82	Planar circular loop antennas with self-biased magnetic film loading. Electronics Letters, 2008, 44, 332.	0.5	19
83	Competition between pumping and damping in microwave-assisted magnetization reversal in magnetic films. Physical Review B, 2010, 81, .	1.1	19
84	High quality factor integrated gigahertz magnetic transformers with FeGaB/Al2O3 multilayer films for radio frequency integrated circuits applications. Journal of Applied Physics, 2014, 115, .	1.1	19
85	Voltage-Impulse-Induced Nonvolatile Control of Inductance in Tunable Magnetoelectric Inductors. Physical Review Applied, 2017, 7, .	1.5	19
86	Longâ€Range Nonvolatile Electric Field Effect in Epitaxial Fe/Pb(Mg _{1/3} Nb _{2/3}) _{0.7} Ti _{0.3} O ₃ Heterostructures. Advanced Functional Materials, 2018, 28, 1707027.	7.8	19
87	Manipulating leakage behavior via thickness in epitaxial BaZr0.35Ti0.65O3 thin film capacitors. Applied Physics Letters, 2020, 116, .	1.5	19
88	Low moment NiCr radio frequency magnetic films for multiferroic heterostructures with strong magnetoelectric coupling. Journal of Applied Physics, 2012, 111, 103915.	1.1	18
89	Flexible Lithium Ferrite Nanopillar Arrays for Bending Stable Microwave Magnetism. ACS Applied Materials & Samp; Interfaces, 2018, 10, 39422-39427.	4.0	18
90	Self-Organization of lons at the Interface between Graphene and Ionic Liquid DEME-TFSI. ACS Applied Materials & Demonstrates amp; Interfaces, 2017, 9, 35437-35443.	4.0	17

#	Article	IF	Citations
91	Low-temperature spin spray deposited ferrite/piezoelectric thin film magnetoelectric heterostructures with strong magnetoelectric coupling. Journal of Materials Science: Materials in Electronics, 2014, 25, 1188-1192.	1.1	16
92	Coexisting ferroelectric and magnetic morphotropic phase boundaries in Dy-modified BiFeO3-PbTiO3 multiferroics. Applied Physics Letters, 2015, 107 , .	1.5	16
93	Growth behavior and RF/microwave properties of low temperature spin-sprayed NiZn ferrite. Journal of Materials Science: Materials in Electronics, 2015, 26, 1890-1894.	1.1	16
94	Detecting Electric Dipoles Interaction at the Interface of Ferroelectric and Electrolyte Using Graphene Field Effect Transistors. ACS Applied Materials & Samp; Interfaces, 2017, 9, 4244-4252.	4.0	16
95	Highly Stable In-Plane Microwave Magnetism in Flexible Li _{0.35} Zn _{0.3} Fe _{2.35} O ₄ (111) Epitaxial Thin Films for Wearable Devices. ACS Applied Materials & Samp; Interfaces, 2018, 10, 32331-32336.	4.0	16
96	Flexible Lead-Free BaTiO ₃ Ferroelectric Elements With High Performance. IEEE Electron Device Letters, 2019, 40, 889-892.	2.2	16
97	Low-damping flexible Y ₃ Fe ₅ O ₁₂ thin films for tunable RF/microwave processors. Materials Horizons, 2020, 7, 1558-1565.	6.4	16
98	Soft magnetism and microwave magnetic properties of Fe-Co-Hf films deposited by composition gradient sputtering. Journal of Applied Physics, 2011, 109, .	1.1	15
99	E-field tuning microwave frequency performance of Co2FeSi/lead zinc niobate–lead titanate magnetoelectric coupling composites. Journal of Applied Physics, 2012, 111, 07C705.	1.1	15
100	Ultra-low temperature epitaxial growth of lithium ferrite thin films by high-pressure sputtering. CrystEngComm, 2015, 17, 8256-8263.	1.3	15
101	Controlled Phase and Tunable Magnetism in Ordered Iron Oxide Nanotube Arrays Prepared by Atomic Layer Deposition. Scientific Reports, 2016, 6, 18401.	1.6	14
102	Formation of Ruddlesden–Popper Faults and Their Effect on the Magnetic Properties in Pr _{0.5} Sr _{0.5} CoO ₃ Thin Films. ACS Applied Materials & Lamp; Interfaces, 2018, 10, 1428-1433.	4.0	14
103	Novel electrostatically tunable FeGaB/(Si)/PMN-PT multiferroic heterostructures for microwave application. , 2009, , .		13
104	Atomic-scale structure and formation of antiphase boundaries in \hat{l}_{\pm} -Li0.5Fe2.5O4 thin films on MgAl2O4(001) substrates. Acta Materialia, 2017, 127, 178-184.	3.8	13
105	Advances in Magnetics Epitaxial Multiferroic Heterostructures and Applications. IEEE Transactions on Magnetics, 2017, 53, 1-16.	1.2	13
106	Dual H-and E-field tunable multiferroic bandpass filters with yttrium iron garnet film., 2011,,.		12
107	Novel laminated multiferroic heterostructures for reconfigurable microwave devices. Science Bulletin, 2014, 59, 5180-5190.	1.7	12
108	Preparation and properties of ZrO2 and TiO2 films and their nanolaminates by atomic layer deposition. Ceramics International, 2015, 41, S278-S282.	2.3	12

#	Article	IF	CITATIONS
109	Ultrahigh Temperature Leadâ€Free Film Capacitors via Strain and Dielectric Constant Double Gradient Design. Small, 2022, 18, e2105780.	5.2	12
110	A wide-band magnetic tunable bandstop filter prototype with FeGaB/Al2O3 multilayer films. Applied Physics Letters, 2015, 107, .	1.5	11
111	Voltage control of spin wave resonance in La0.5Sr0.5MnO3/PMN-PT (001) multiferroic heterostructures. Applied Physics Letters, 2017, 111, .	1.5	11
112	Atomic scale investigation of planar defects in 0.95Na0.5Bi0.5TiO3–0.05BaTiO3 thin films on SrTiO3 (001) substrates. Journal of Alloys and Compounds, 2016, 676, 173-180.	2.8	10
113	Spin-orbital coupling induced four-fold anisotropy distribution during spin reorientation in ultrathin Co/Pt multilayers. Applied Physics Letters, 2017, 110, .	1.5	10
114	Voltage Tuning of Ferromagnetic Resonance and Linewidth in Spinel Ferrite/Ferroelectric Multiferroic Heterostructures. IEEE Magnetics Letters, 2015, 6, 1-4.	0.6	9
115	Reciprocal-space-resolved piezoelectric control of non-volatile magnetism in epitaxial LiFe5O8 film on Pb(Mg1/3Nb2/3)0.7Ti0.3O3 substrate. Applied Physics Letters, 2019, 114, .	1.5	9
116	Flexible CoFeB/Silk Films for Biocompatible RF/Microwave Applications. ACS Applied Materials & Amp; Interfaces, 2020, 12, 51654-51661.	4.0	9
117	Freestanding single-crystal Ni _{0.5} Zn _{0.5} Fe ₂ O ₄ ferrite membranes with controllable enhanced magnetic properties for flexible RF/microwave applications. Journal of Materials Chemistry C, 2020, 8, 17099-17106.	2.7	9
118	Realizing high energy density and efficiency simultaneously via sub-grain modification in lead-free dielectric films. Nano Energy, 2022, 98, 107313.	8.2	9
119	Control of magnetic relaxation by electric-field-induced ferroelectric phase transition and inhomogeneous domain switching. Applied Physics Letters, 2016, 108, .	1.5	8
120	Enhanced magnetic properties in epitaxial self-assembled vertically aligned nanocomposite (Pr _{0.5} Ba _{0.5} MnO ₃) _{0.5} :(CeO ₂) _{0.5} t films. Journal of Materials Chemistry C, 2016, 4, 10955-10961.	hian7	8
121	Silicon-integrated lead-free BaTiO ₃ -based film capacitors with excellent energy storage performance and highly stable irradiation resistance. Journal of Materials Chemistry A, 2021, 9, 14818-14826.	5.2	7
122	Epitaxial lift-off of flexible single-crystal magnetite thin films with tunable magnetic performances by mechanical deformation. Journal of Alloys and Compounds, 2021, 887, 161470.	2.8	7
123	Microwave Frequency Performance and High Magnetic Anisotropy of Nanocrystalline Fe ₇₀ Co ₃₀ -B Films Prepared by Composition Gradient Sputtering. Journal of Nanoscience and Nanotechnology, 2013, 13, 1091-1094.	0.9	6
124	Atomic-scale investigation of spinel LiFe5O8 thin films on SrTiO3 (001) substrates. Journal of Materials Science and Technology, 2020, 40, 31-38.	5.6	6
125	Effect of mosaicity on energy storage performance of epitaxial BaZr0.35Ti0.65O3 films. Applied Physics Letters, 2021, 118, .	1.5	6
126	Wireless strain sensor based on the magnetic strain anisotropy dependent ferromagnetic resonance. AIP Advances, 2020, 10, 105310.	0.6	5

#	Article	IF	Citations
127	Manipulation of microwave magnetism in flexible La0.7Sr0.3MnO3 film by deformable ionic gel gating. Applied Surface Science, 2021, 563, 150074.	3.1	5
128	Growth behaviors and characteristics of low temperature spin-sprayed ZnO and Al-doped ZnO microstructures. Journal of Materials Science: Materials in Electronics, 2013, 24, 2058-2066.	1.1	4
129	Self-assembled ZnO/Ag nanocomposite thin films with enhanced multiple-phonon resonant Raman scattering. Materials Letters, 2014, 115, 172-175.	1.3	4
130	Microstructure and electrical conductivity of $(Y, Sr)CoO\ 3-\hat{I}$ thin films tuned by the film-growth temperature. Journal of Alloys and Compounds, 2017, 714, 181-185.	2.8	4
131	Structural transition induced enhancement of magnetization and magnetoresistance in epitaxial (Pr _{0.5} Ba _{0.5} MnO ₃ \csub>1â^'x:(CeO ₂) _x vertically aligned thin films. CrystEngComm, 2018, 20, 5017-5024.	1.3	4
132	Atomic-scale imaging of heterointerface and planar faults in epitaxial (Pr, Sr)2CoO4 films on SrTiO3 (0â€⁻0â€⁻1) substrates. Journal of Crystal Growth, 2019, 511, 93-98.	0.7	4
133	Lateral Graphene p–n Junctions Realized by Nanoscale Bipolar Doping Using Surface Electric Dipoles and Selfâ€Organized Molecular Anions. Advanced Materials Interfaces, 2019, 6, 1801380.	1.9	4
134	Self-assembling behavior and interface structure in vertically aligned nanocomposite (Pr0.5Ba0.5MnO3)1-x:(CeO2)x films on (001) (La,Sr)(Al,Ta)O3 substrates. Scientific Reports, 2020, 10, 2348.	1.6	4
135	Improving High-Temperature Energy Storage Performance of Silicon-Integrated Oxide Film Capacitors via Inserting a Graphene Buffer Layer. IEEE Electron Device Letters, 2021, 42, 1216-1219.	2.2	4
136	Emergent perpendicular magnetic anisotropy at the interface of an oxide heterostructure. Physical Review B, 2021, 104, .	1.1	4
137	Domainâ€Engineered Flexible Ferrite Membrane for Novel Machine Learning Based Multimodal Flexible Sensing. Advanced Materials Interfaces, 2022, 9, .	1.9	4
138	Tunable Microwave Frequency Performance of Nanocomposite Co ₂ MnSi/PZN-PT Magnetoelectric Coupling Structure. Journal of Nanoscience and Nanotechnology, 2013, 13, 1182-1185.	0.9	3
139	E-Field Tuned Rotation of Magnetic Anisotropy and Enhanced Microwave Performance in FeCoAlO/PZN–PT Multiferroic Composite Prepared by Composition Gradient Sputtering. IEEE Transactions on Magnetics, 2014, 50, 1-4.	1.2	3
140	Effect of thickness-dependent crystal mosaicity and chemical defect on electric properties in yttrium-stabilized epitaxial HfO2 thin films. Applied Physics Letters, 2017, 110, 122904.	1.5	3
141	Ferroelastic Strain-Mediated Nonvolatile Tuning of Perpendicular Magnetic Anisotropy in (Co/Pt)3 /(1Â1Â1) Pb(Mg1/3Nb2/3)O3-PbTiO3 Multiferroic Heterostructures. IEEE Magnetics Letters, 2017, 8, 1-5.	0.6	3
142	Ferromagnetic Resonance of Single-Crystalline La _{0.67} Sr _{0.33} MnO ₃ Thin Film Integrated on Silicon. IEEE Electron Device Letters, 2019, 40, 1856-1859.	2.2	3
143	Probing the relationship of cations-graphene interaction strength with self-organization behaviors of the anions at the interface between graphene and ionic liquids. Applied Surface Science, 2019, 479, 576-581.	3.1	3
144	Enhancing energy storage performances in an ultra-wide temperature range via interface engineering and thermal management for silicon-integrated dielectric capacitors. Applied Physics Letters, 2021, 119, .	1.5	3

9

#	Article	IF	CITATIONS
145	Modulating the transport property of flexible La0.67Ca0.33MnO3 thin film by mechanical bending. Applied Physics Letters, 2021, 118, 052404.	1.5	2
146	Stress-induced controllable magnetic properties in flexible epitaxial Mn0.5Zn0.5Fe2O4 ferrite films. Journal of Materiomics, 2022, 8, 596-600.	2.8	2
147	Strong Electric Field Tuning of Magnetism in Multiferroic Heterostructures. Ceramic Engineering and Science Proceedings, 0, , 53-66.	0.1	1
148	Effect of post-annealing on microstructural and magnetic properties of CoFe2O4:MgO nanocomposite films on MgAl2O4(0 0 1) substrates. Materials Letters, 2022, 308, 131255.	1.3	1
149	Dislocation Defect Layer-Induced Magnetic Bi-states Phenomenon in Epitaxial La0.7Sr0.3MnO3(111) Thin Films. ACS Applied Materials & amp; Interfaces, 2021, , .	4.0	1
150	Nonvolatile modulation of spin transport in PMN-PT/LiFe5O8/Pt multiferroic heterostructures. Applied Physics Letters, 2021, 119, .	1.5	1
151	Dielectric property and tunability of multilayer BST-BTO thin film in the terahertz range. Optics and Laser Technology, 2022, 155, 108366.	2.2	1
152	Effect of the Thickness of Cr Interlayer on the High-Frequency Characteristics of FeCoTa/Cr/FeCoTa Multilayers. Advanced Materials Research, 2011, 287-290, 1356-1359.	0.3	0
153	lonicâ€Liquid Gating: Quantitative Determination on Ionicâ€Liquidâ€Gating Control of Interfacial Magnetism (Adv. Mater. 17/2017). Advanced Materials, 2017, 29, .	11.1	0
154	Effect of growth temperature on the microstructural properties of 0.95Na0.5Bi0.5TiO3–0.05BaTiO3 films prepared on MgO (0†0†1) substrates. Materials Letters, 2020, 259, 126847.	1.3	0