
Bethany M Hudak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4498878/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Laser-Patterned Submicrometer Bi ₂ Se ₃ –WS ₂ Pixels with Tunable Circular Polarization at Room Temperature. ACS Applied Materials & Interfaces, 2022, 14, 9504-9514.	8.0	2
2	Capacity and phase stability of metal-substituted α-Ni(OH) ₂ nanosheets in aqueous Ni–Zn batteries. Materials Advances, 2021, 2, 3060-3074.	5.4	13
3	Mechanism of Electron-Beam Manipulation of Single-Dopant Atoms in Silicon. Journal of Physical Chemistry C, 2021, 125, 16041-16048.	3.1	10
4	Electron Beam Control of Dopants in 2D and 3D Materials. Microscopy and Microanalysis, 2021, 27, 2150-2153.	0.4	0
5	Enhancing Li-ion capacity and rate capability in cation-defective vanadium ferrite aerogels via aluminum substitution. RSC Advances, 2021, 11, 14495-14503.	3.6	1
6	Evolution of lattice defects upon Bi-doping of epitaxial Si overlayers on Si(1 0 0). Applied Surface Science, 2020, 502, 144284.	6.1	0
7	Unveiling the Microscopic Origins of Phase Transformations: An <i>in Situ</i> TEM Perspective. Chemistry of Materials, 2020, 32, 639-650.	6.7	12
8	Temperature Dependence of Impurity Distributions in Nanodiamonds as Revealed by Coordinated UHV-STEM EDX and EELS Analysis. Microscopy and Microanalysis, 2020, 26, 1506-1507.	0.4	2
9	Accurately Imaging, Tracking and Moving Single Atoms. Microscopy and Microanalysis, 2020, 26, 2556-2557.	0.4	0
10	Uncovering the Mechanism for Electron-beam Manipulation of Dopants in Silicon. Microscopy and Microanalysis, 2020, 26, 2560-2561.	0.4	0
11	Sustainable Electrocatalytic Architectures Enable Rechargeable Zinc–Air Batteries with Low Voltage Hysteresis. ACS Applied Energy Materials, 2020, 3, 10485-10494.	5.1	3
12	Detection of defects in atomic-resolution images of materials using cycle analysis. Advanced Structural and Chemical Imaging, 2020, 6, .	4.0	11
13	A STEM-based Path Towards Atomic-scale Silicon-based Devices. Microscopy and Microanalysis, 2019, 25, 2290-2291.	0.4	0
14	From Control of the Electron Beam to Control of Single Atoms. Microscopy and Microanalysis, 2019, 25, 1678-1679.	0.4	0
15	Atom-by-atom fabrication with electron beams. Nature Reviews Materials, 2019, 4, 497-507.	48.7	73
16	Observation of Square-Planar Distortion in Lanthanide-Doped Skutterudite Crystals. Journal of Physical Chemistry C, 2019, 123, 14632-14638.	3.1	1
17	Direct atomic fabrication and dopant positioning in Si using electron beams with active real-time image-based feedback. Nanotechnology, 2018, 29, 255303.	2.6	46
18	Towards Atomic-Scale Fabrication in Silicon. Microscopy and Microanalysis, 2018, 24, 158-159.	0.4	0

BETHANY M HUDAK

#	Article	IF	CITATIONS
19	Shell-Induced Ostwald Ripening: Simultaneous Structure, Composition, and Morphology Transformations during the Creation of Hollow Iron Oxide Nanocapsules. ACS Nano, 2018, 12, 9051-9059.	14.6	36
20	Directed Atom-by-Atom Assembly of Dopants in Silicon. ACS Nano, 2018, 12, 5873-5879.	14.6	62
21	Atomic Manipulation on a Scanning Transmission Electron Microscope Platform using Real-Time Image Processing and Feedback. Microscopy and Microanalysis, 2018, 24, 534-535.	0.4	0
22	Direct Imaging of Low-Dimensional Nanostructures. Microscopy and Microanalysis, 2018, 24, 90-91.	0.4	0
23	Real-time atomistic observation of structural phase transformations in individual hafnia nanorods. Nature Communications, 2017, 8, 15316.	12.8	59
24	Direct Observation of Hafnia Structural Phase Transformations. Microscopy and Microanalysis, 2017, 23, 2092-2093.	0.4	0
25	Movement and Imaging of Single-Atom Dopants in Silicon. Microscopy and Microanalysis, 2017, 23, 1706-1707.	0.4	0
26	Simple synthetic route to manganese-containing nanowires with the spinel crystal structure. Journal of Solid State Chemistry, 2016, 240, 23-29.	2.9	15
27	Co x Ni4â^'x Sb12â^'y Sn y skutterudites: processing and thermoelectric properties. Journal of Materials Science, 2016, 51, 6117-6132.	3.7	4
28	Direct observation of Li diffusion in Li-doped ZnO nanowires. Materials Research Express, 2016, 3, 054001.	1.6	6
29	Understanding nanomaterial synthesis with in situ transmission electron microscopy. Microscopy and Microanalysis, 2015, 21, 1507-1508.	0.4	0
30	Real-Time Observation of the Solid–Liquid–Vapor Dissolution of Individual Tin(IV) Oxide Nanowires. ACS Nano, 2014, 8, 5441-5448.	14.6	18