H Q Nimal Gunaratne

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4498834/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Taming Tris(bipyridine)ruthenium(II) and Its Reactions in Water by Capture/Release with Shape-Switchable Symmetry-Matched Cyclophanes. Journal of the American Chemical Society, 2022, 144, 4977-4988.	6.6	12
2	lonic Liquids–Cobalt(II) Thermochromic Complexes: How the Structure Tunability Affects "Self-Contained―Systems. ACS Sustainable Chemistry and Engineering, 2021, 9, 4064-4075.	3.2	7
3	Comparison of UV-A photolytic and UV/TiO2 photocatalytic effects on Microcystis aeruginosa PCC7813 and four microcystin analogues: A pilot scale study. Journal of Environmental Management, 2021, 298, 113519.	3.8	9
4	â€~All in one' photo-reactor pod containing TiO ₂ coated glass beads and LEDs for continuous photocatalytic destruction of cyanotoxins in water. Environmental Science: Water Research and Technology, 2020, 6, 945-950.	1.2	9
5	When Functionalization Becomes Useful: Ionic Liquids with a "Sweet―Appended Moiety Demonstrate Drastically Reduced Toxicological Effects. ACS Sustainable Chemistry and Engineering, 2020, 8, 926-938.	3.2	24
6	Photocatalytic removal of the cyanobacterium Microcystis aeruginosa PCC7813 and four microcystins by TiO2 coated porous glass beads with UV-LED irradiation. Science of the Total Environment, 2020, 745, 141154.	3.9	25
7	Light-Triggered Switchable Ionic Liquid Aqueous Two-Phase Systems. ACS Sustainable Chemistry and Engineering, 2020, 8, 15327-15335.	3.2	14
8	Halogen-bond mediated efficient storage of extremely volatile perfluoroiodides in ionic liquids. Chemical Communications, 2019, 55, 9088-9091.	2.2	5
9	Molecular memory with downstream logic processing exemplified by switchable and self-indicating guest capture and release. Nature Communications, 2019, 10, 49.	5.8	45
10	lonic liquids tethered to a preorganised 1,2-diamide motif for extraction of lanthanides. Green Chemistry, 2019, 21, 2583-2588.	4.6	12
11	A magnetic self-contained thermochromic system with convenient temperature range. Green Chemistry, 2019, 21, 1412-1416.	4.6	19
12	Selective monoalkylation of p-tert-butylcalix-[4]-arene in a methyl carbonate ionic liquid. Chemical Communications, 2018, 54, 12037-12040.	2.2	1
13	Low-Temperature Tailoring of Copper-Deficient Cu _{3–<i>x</i>} P—Electric Properties, Phase Transitions, and Performance in Lithium-Ion Batteries. Chemistry of Materials, 2018, 30, 7111-7123.	3.2	30
14	Carbon Dioxide Utilisation for the Synthesis of Unsymmetrical Dialkyl and Cyclic Carbonates Promoted by Basic Ionic Liquids. Australian Journal of Chemistry, 2018, 71, 181.	0.5	7
15	"Sweet―ionic liquid gels: materials for sweetening of fuels. Green Chemistry, 2018, 20, 4260-4276.	4.6	44
16	Frustrated Lewis pairs in ionic liquids and molecular solvents – a neutron scattering and NMR study of encounter complexes. Chemical Communications, 2018, 54, 8689-8692.	2.2	23
17	1-(+)-Dehydroabietylimidazolium Salts as Enantiomer Discriminators for NMR Spectroscopy. Australian Journal of Chemistry, 2017, 70, 845.	0.5	3
18	Sustainable Cyclic Carbonate Production, Utilizing Carbon Dioxide and Azolate Ionic Liquids. ACS Sustainable Chemistry and Engineering, 2017, 5, 5635-5641.	3.2	76

#	Article	IF	CITATIONS
19	Using chiral ionic liquid additives to enhance asymmetric induction in a Diels–Alder reaction. Dalton Transactions, 2017, 46, 1704-1713.	1.6	10
20	Modeling the Vapor–Liquid Equilibria of Ionic Liquids Containing Perfume Raw Materials. Journal of Chemical & Engineering Data, 2017, 62, 2787-2798.	1.0	4
21	Ionic liquids that form adducts with alcohols. Green Chemistry, 2017, 19, 614-618.	4.6	8
22	lonic liquids as modulators of fragrance release in consumer goods. New Journal of Chemistry, 2016, 40, 9958-9967.	1.4	11
23	Easily Accessible Rare-Earth-Containing Phosphonium Room-Temperature Ionic Liquids: EXAFS, Luminescence, and Magnetic Properties. Journal of Physical Chemistry B, 2016, 120, 5301-5311.	1.2	23
24	Pro-fragrant ionic liquids with stable hemiacetal motifs: water-triggered release of fragrances. Chemical Communications, 2015, 51, 4455-4457.	2.2	23
25	Thermochromism and switchable paramagnetism of cobalt(<scp>ii</scp>) in thiocyanate ionic liquids. Dalton Transactions, 2015, 44, 11286-11289.	1.6	63
26	3-Methylpiperidinium ionic liquids. Physical Chemistry Chemical Physics, 2015, 17, 10398-10416.	1.3	27
27	Modification of Fluorescent Photoinduced Electron Transfer (PET) Sensors/Switches To Produce Molecular Photo″onic Triode Action. Angewandte Chemie - International Edition, 2014, 53, 3622-3625.	7.2	29
28	Enhanced laccase stability through mediator partitioning into hydrophobic ionic liquids. Green Chemistry, 2014, 16, 1462-1469.	4.6	23
29	Ionic liquids for efficient hydrogen sulfide and thiol scavenging. Green Chemistry, 2014, 16, 2411-2417.	4.6	20
30	Dual functional ionic liquids as antimicrobials and plasticisers for medical grade PVCs. RSC Advances, 2014, 4, 8567.	1.7	26
31	Tunable thermomorphism and applications of ionic liquid analogues of Girard's reagents. Green Chemistry, 2014, 16, 4115-4121.	4.6	24
32	Novel chiral ionic liquids: physicochemical properties and investigation of the internal rotameric behaviour in the neat system. Physical Chemistry Chemical Physics, 2014, 16, 1208-1226.	1.3	21
33	Solution and thermal behaviour of novel dicationic imidazolium ionic liquids. Organic and Biomolecular Chemistry, 2013, 11, 5836.	1.5	41
34	Controlled fragrance delivery in functionalised ionic liquid-enzyme systems. RSC Advances, 2013, 3, 329-333.	1.7	10
35	Chiral thiouronium salts: synthesis, characterisation and application in NMR enantio-discrimination of chiral oxoanions. New Journal of Chemistry, 2013, 37, 515-533.	1.4	39
36	Production of polyetheretherketone in ionic liquid media. Green Chemistry, 2013, 15, 1166.	4.6	18

#	Article	IF	CITATIONS
37	Ionic Liquids with Solvatochromatic and Charge-Transfer Functionalities Incorporating the Viologen Moiety. Australian Journal of Chemistry, 2013, 66, 607.	0.5	8
38	Measuring the effect of ionic liquids on laccase activity using a simple, parallel method. Green Chemistry, 2012, 14, 725.	4.6	33
39	Phosphine oxide functionalised imidazolium ionic liquids as tuneable ligands for lanthanide complexation. Chemical Communications, 2012, 48, 6115.	2.2	45
40	Structural effects on the pH-dependent fluorescence of naphthalenic derivatives and consequences for sensing/switching. Photochemical and Photobiological Sciences, 2012, 11, 1675-1681.	1.6	60
41	Azepanium ionic liquids. Green Chemistry, 2011, 13, 3137.	4.6	42
42	New ionic liquids from azepane and 3-methylpiperidine exhibiting wide electrochemical windows. Green Chemistry, 2011, 13, 59-63.	4.6	41
43	Screening ionic liquids for use in biotransformations with whole microbial cells. Green Chemistry, 2011, 13, 1843.	4.6	68
44	Novel biocompatible cholinium-based ionic liquids—toxicity and biodegradability. Green Chemistry, 2010, 12, 643.	4.6	491
45	Dissolution of cork biopolymers in biocompatible ionic liquids. Green Chemistry, 2010, 12, 367.	4.6	128
46	Functionalised ionic liquids: synthesis of ionic liquids with tethered basic groups and their use in Heck and Knoevenagel reactions. New Journal of Chemistry, 2010, 34, 723.	1.4	64
47	Chloroindate(iii) ionic liquids as catalysts for alkylation of phenols and catechol with alkenes. New Journal of Chemistry, 2010, 34, 1821.	1.4	21
48	1-Alkyl-3-methylimidazolium alkanesulfonate ionic liquids, [CnH2n+1mim][CkH2k+1SO3]: synthesis and physicochemical properties. Physical Chemistry Chemical Physics, 2009, 11, 8939.	1.3	70
49	Catalytic activity of laccases in aqueous solutions of ionic liquids. Green Chemistry, 2008, 10, 806.	4.6	64
50	Analog Parallel Processing of Molecular Sensory Information. Journal of the American Chemical Society, 2007, 129, 3050-3051.	6.6	66
51	One-Pot Multistep Synthetic Strategies for the Production of Fenpropimorph Using an Ionic Liquid Solvent. Organic Process Research and Development, 2006, 10, 94-102.	1.3	34
52	Synthesis of 3-(4-tert-butylphenyl)-2-propen-1-one, a precursor to Lilial®, via an aldol condensation in an ionic liquid. Green Chemistry, 2005, 7, 224-229.	4.6	19
53	Synthesis of Functionalized Macrocyclic Compounds as Na+ and K+ Receptors: A Mild and High Yielding Nitration in Water of Mono and Bis 2-Methoxyaniline Functionalized Crown Ethers ChemInform, 2003, 34, no.	0.1	0
54	Synthesis of functionalised macrocyclic compounds as Na+ and K+ receptors: a mild and high yielding nitration in water of mono and bis 2-methoxyaniline functionalised crown ethers. Journal of the Chemical Society, Perkin Transactions 1, 2002, , 1954-1962.	1.3	19

#	Article	IF	CITATIONS
55	Integration of Logic Functions and Sequential Operation of Gates at the Molecular-Scale. Journal of the American Chemical Society, 1999, 121, 1393-1394.	6.6	352
56	Arenedicarboximide Building Blocks for Fluorescent Photoinduced Electron Transfer pH Sensors Applicable with Different Media and Communication Wavelengths. Chemistry - A European Journal, 1998, 4, 1810-1815.	1.7	133
57	Molecular Photoionic AND Logic Gates with Bright Fluorescence and "Offâ^'On―Digital Action. Journal of the American Chemical Society, 1997, 119, 7891-7892.	6.6	330
58	Signaling Recognition Events with Fluorescent Sensors and Switches. Chemical Reviews, 1997, 97, 1515-1566.	23.0	6,736
59	Higher Generation Luminescent Pet (Photoinduced Electron Transfer) Sensors. , 1997, , 143-157.		4
60	Fluorescent signalling of the brain neurotransmitter γ-aminobutyric acid and related amino acid zwitterions. Chemical Communications, 1996, , 2191-2192.	2.2	96
61	Direct visual indication of pH windows: â€~off–on–off' fluorescent PET (photoinduced electron) Tj ETQq1	1.0.78431 2.2	14 rgBT /Civi
62	Fluorescent switches with high selectivity towards sodium ions: correlation of ion-induced conformation switching with fluorescence function. Chemical Communications, 1996, , 1967.	2.2	87
63	Photoionic devices with receptor-functionalized fluorophores. Pure and Applied Chemistry, 1996, 68, 1443-1448.	0.9	69
64	Protonengesteuertes Schalten der Lumineszenz von Lanthanoidkomplexen in wÃßriger Lösung: pHâ€Sensoren auf der Basis langlebiger Emission. Angewandte Chemie, 1996, 108, 2253-2255.	1.6	16
65	Proton-Controlled Switching of Luminescence in Lanthanide Complexes in Aqueous Solution: pH Sensors Based on Long-Lived Emission. Angewandte Chemie International Edition in English, 1996, 35, 2116-2118.	4.4	129
66	Fluorescent PET(Photoinduced Electron Transfer) Sensors for Calcium Ions. Extension to Multiple Fluorophores and Virtual Spacers. Chemistry Letters, 1995, 24, 125-126.	0.7	21
67	Neue fluoreszierende Modellverbindungen für das Studium des lichtinduzierten Elektronentransfers: der Einfluß eines molekularen elektrischen Feldes im angeregten Zustand. Angewandte Chemie, 1995, 107, 1889-1891.	1.6	38
68	New Fluorescent Model Compounds for the Study of Photoinduced Electron Transfer: The Influence of a Molecular Electric Field in the Excited State. Angewandte Chemie International Edition in English, 1995, 34, 1728-1731.	4.4	313
69	Luminescence and charge transfer. Part 4. â€ ⁻ On–off' fluorescent PET (photoinduced electron transfer) sensors with pyridine receptors: 1,3-diaryl-5-pyridyl-4,5-dihydropyrazoles. Journal of the Chemical Society Perkin Transactions II, 1995, , 685-690.	0.9	87
70	â€~Off–on' fluorescent sensors for physiological levels of magnesium ions based on photoinduced electron transfer (PET), which also behave as photoionic OR logic gates. Journal of the Chemical Society Chemical Communications, 1994, .	2.0	127
71	A molecular photoionic AND gate based on fluorescent signalling. Nature, 1993, 364, 42-44.	13.7	1,165
72	Fluorescent PET (photoinduced electron transfer) sensors. Topics in Current Chemistry, 1993, , 223-264.	4.0	369

#	Article	IF	CITATIONS
73	Luminescence and charge transfer. Part 3. The use of chromophores with ICT (internal charge) Tj ETQq1 1 0.784 sensors and related absorption pH sensors with aminoalkyl side chains. Journal of the Chemical Society Perkin Transactions II 1993 1611	314 rgBT 0.9	Overlock 10/ 72
74	Fluorescent Photoinduced Electron-Transfer Sensors. ACS Symposium Series, 1993, , 45-58.	0.5	9
75	Luminescence and charge transfer. Part 2. Aminomethyl anthracene derivatives as fluorescent PET (photoinduced electron transfer) sensors for protons. Journal of the Chemical Society Perkin Transactions II, 1992, , 1559.	0.9	90
76	Molecular fluorescent signalling with â€~fluor–spacer–receptor' systems: approaches to sensing and switching devices via supramolecular photophysics. Chemical Society Reviews, 1992, 21, 187-195.	18.7	573
77	A new benzo-annelated cryptand and a derivative with alkali cation-sensitive fluorescence. Tetrahedron Letters, 1990, 31, 5193-5196.	0.7	65
78	Fluorescent PET (photoinduced electron transfer) sensors selective for submicromolar calcium with quantitatively predictable spectral and ion-binding properties. Journal of the Chemical Society Chemical Communications, 1990, , 186.	2.0	72
79	X-Y-ZH Systems as potential 1,3-dipoles. Tetrahedron, 1988, 44, 557-570.	1.0	114
80	XY–ZH Systems as potential 1,3-dipoles. Part 8. Pyrrolidines and Δ5-pyrrolines (3,7-diazabicyclo[3.3.0]octenes) from the reaction of imines of α-amino acids and their esters with cyclic dipolarophiles. Mechanism of racemisation of α-amino acids and their esters in the presence of aldehydes. Journal of the Chemical Society Perkin Transactions 1, 1987, , 2285-2296.	0.9	53
81	A simple one-step synthesis of N-substituted isoindolin-1-ones. Diastereofacially selective protonation of an intermediate isoindolinol. Journal of the Chemical Society Chemical Communications, 1985, , 1183.	2.0	36
82	Prototropic generation of dipoles. A new synthesis of indole-3-carboxylic acids. Journal of the Chemical Society Chemical Communications, 1984, , 661.	2.0	8
83	Xĩ€†Y–ZH systems as potential 1,3-dipoles. Part 1. Background and scope. Journal of the Chemical Society Perkin Transactions 1, 1984, , 41-46	0.9	76
84	Observations on the pictet-spengler synthesis of 1,2,3,4-tetrahydro-β-carbolines. Journal of the Chemical Society Perkin Transactions 1, 1983, , 185-187.	0.9	25