Lu Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4498665/publications.pdf Version: 2024-02-01

	516710	315739
1,474	16	38
citations	h-index	g-index
52	52	841
docs citations	times ranked	citing authors
	citations 52	1,47416citationsh-index5252

#	Article	IF	CITATIONS
1	Lung resistance and elastance are different in ex vivo sheep lungs ventilated by positive and negative pressures. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2022, 322, L673-L682.	2.9	7
2	Airway and parenchymal tissue resistance and elastance in ex vivo sheep lungs: effects of bronchochallenge and deep inspiration. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2022, 322, L882-L889.	2.9	2
3	Mediators of human ureteral smooth muscle contraction—a role for erythropoietin, tamsulosin and Gli effectors. Translational Andrology and Urology, 2021, 10, 2953-2961.	1.4	2
4	Filament evanescence of myosin II and smooth muscle function. Journal of General Physiology, 2021, 153, .	1.9	12
5	Airway diameter at different transpulmonary pressures in ex vivo sheep lungs: implications for deep inspiration-induced bronchodilation and bronchoprotection. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2021, 321, L663-L674.	2.9	6
6	p116 ^{Rip} promotes myosin phosphatase activity in airway smooth muscle cells. Journal of Cellular Physiology, 2020, 235, 114-127.	4.1	7
7	Upregulation of smooth muscle Rho-kinase protein expression in human asthma. European Respiratory Journal, 2020, 55, 1901785.	6.7	16
8	Mechanopharmacology of Rho-kinase antagonism in airway smooth muscle and potential new therapy for asthma. Pharmacological Research, 2020, 159, 104995.	7.1	8
9	The Huxley crossbridge model as the basic mechanism for airway smooth muscle contraction. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2019, 317, L235-L246.	2.9	15
10	Mechanopharmacology and Synergistic Relaxation of Airway Smooth Muscle. Journal of Engineering and Science in Medical Diagnostics and Therapy, 2019, 2, 0110041-110047.	0.5	3
11	Is Rho-Kinase Expression Up-Regulated in Asthmatic Airway Smooth Muscle?. , 2019, , .		0
12	Bronchodilatory effect of deep inspiration in freshly isolated sheep lungs. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 312, L178-L185.	2.9	12
13	Smooth muscle function and myosin polymerization. Journal of Cell Science, 2017, 130, 2468-2480.	2.0	13
14	The importance of complete tissue homogenization for accurate stoichiometric measurement of myosin light chain phosphorylation in airway smooth muscle. Canadian Journal of Physiology and Pharmacology, 2015, 93, 155-162.	1.4	1
15	Biphasic force response to iso-velocity stretch in airway smooth muscle. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 309, L653-L661.	2.9	10
16	Force maintenance and myosin filament assembly regulated by Rho-kinase in airway smooth muscle. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 308, L1-L10.	2.9	39
17	Ovalbumin sensitization of guinea pig at birth prevents the ontogenetic decrease in airway smooth muscle responsiveness. Physiological Reports, 2014, 2, e12241.	1.7	2
18	Rho-kinase mediated cytoskeletal stiffness in skinned smooth muscle. Journal of Applied Physiology, 2013, 115, 1540-1552.	2.5	14

Lu Wang

#	Article	IF	CITATIONS
19	Myosin filaments in smooth muscle cells do not have a constant length. Journal of Physiology, 2013, 591, 5867-5878.	2.9	28
20	A Brief History of Airway Smooth Muscle's Role in Airway Hyperresponsiveness. Journal of Allergy, 2012, 2012, 1-8.	0.7	4
21	Effects Of IgE And IL-4 On Gene Expression In Proliferative And Contractile Human Airway Smooth Muscle Cells. , 2010, , .		0
22	CD4+ Cells In Guinea Pig Airways During Ontogenesis And After Neonatal Allergen Sensitization. , 2010, , .		0
23	Neonatal Allergen Sensitization Prevents The Ontogenetic Increase Of Vimentin And Tissue Stiffness In Guinea Pig Airways. , 2010, , .		0
24	A Guinea Pig Model of Early Stages of Asthma with Hyperresponsive Tracheal Smooth Muscle but No Airway Inflammation , 2009, , .		0
25	Airway smooth muscle relaxation is impaired in mice lacking the p47phoxsubunit of NAD(P)H oxidase. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2008, 294, L139-L148.	2.9	8
26	Reduced spontaneous relaxation in immature guinea pig airway smooth muscle is associated with increased prostanoid release. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2008, 294, L964-L973.	2.9	7
27	Airway smooth muscle dynamics: a common pathway of airway obstruction in asthma. European Respiratory Journal, 2007, 29, 834-860.	6.7	344
28	Three paradigms of airway smooth muscle hyperresponsiveness in young guinea pigsThis article is one of a selection of papers published in the Special Issue on Recent Advances in Asthma Research Canadian Journal of Physiology and Pharmacology, 2007, 85, 715-726.	1.4	16
29	Ontogenesis of myosin light chain phosphorylation in guinea pig tracheal smooth muscle. Pediatric Pulmonology, 2005, 39, 108-116.	2.0	12
30	Mechanisms of airway smooth muscle relaxation during maturation. Canadian Journal of Physiology and Pharmacology, 2005, 83, 833-840.	1.4	5
31	A maturational model for the study of airway smooth muscle adaptation to mechanical oscillation. Canadian Journal of Physiology and Pharmacology, 2005, 83, 817-824.	1.4	2
32	Length oscillation induces force potentiation in infant guinea pig airway smooth muscle. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2005, 289, L909-L915.	2.9	31
33	Maturation of guinea pig tracheal strip stiffness. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2005, 289, L902-L908.	2.9	11
34	Mechanical Strain Inhibits Airway Smooth Muscle Gene Transcription via Protein Kinase C Signaling. American Journal of Respiratory Cell and Molecular Biology, 2004, 31, 54-61.	2.9	35
35	On the terminology for describing the length-force relationship and its changes in airway smooth muscle. Journal of Applied Physiology, 2004, 97, 2029-2034.	2.5	81
36	Ontogenesis of myosin light chain kinase mRNA and protein content in guinea pig tracheal smooth muscle. Pediatric Pulmonology, 2004, 38, 456-464.	2.0	16

Lu Wang

#	Article	IF	CITATIONS
37	Deep inspiration and airway smooth muscle adaptation to length change. Respiratory Physiology and Neurobiology, 2003, 137, 169-178.	1.6	39
38	The Functional Consequences of Structural Changes in the Airways. Chest, 2003, 123, 356S-362S.	0.8	14
39	Structure-function correlation in airway smooth muscle adapted to different lengths. American Journal of Physiology - Cell Physiology, 2003, 285, C384-C390.	4.6	74
40	Adaptation to chronic length change in explanted airway smooth muscle. Journal of Applied Physiology, 2003, 95, 448-453.	2.5	43
41	The Functional Consequences of Structural Changes in the Airways: Implications for Airway Hyperresponsiveness in Asthma. Chest, 2003, 123, 356S-a-362.	0.8	21
42	Changes in force-velocity properties of trachealis due to oscillatory strains. Journal of Applied Physiology, 2002, 92, 1865-1872.	2.5	28
43	Myosin thick filament lability induced by mechanical strain in airway smooth muscle. Journal of Applied Physiology, 2001, 90, 1811-1816.	2.5	104
44	Selected Contribution: Effect of chronic passive length change on airway smooth muscle length-tension relationship. Journal of Applied Physiology, 2001, 90, 734-740.	2.5	108
45	Mechanical properties of the tracheal mucosal membrane in the rabbit. I. Steady-state stiffness as a function of age. Journal of Applied Physiology, 2000, 88, 1014-1021.	2.5	36
46	Mechanical properties of the tracheal mucosal membrane in the rabbit. II. Morphometric analysis. Journal of Applied Physiology, 2000, 88, 1022-1028.	2.5	15
47	Airway narrowing and internal structural constraints. Journal of Applied Physiology, 2000, 88, 527-533.	2.5	54
48	Effects of length oscillation on the subsequent force development in swine tracheal smooth muscle. Journal of Applied Physiology, 2000, 88, 2246-2250.	2.5	144
49	NO does not mediate inhibitory neural responses in sheep airway and bronchial vascular smooth muscle. Journal of Applied Physiology, 1998, 84, 809-814.	2.5	7
50	Fast Fourier transform analysis of dynamic data: sine wave stress - strain analysis of biological tissue. Physics in Medicine and Biology, 1997, 42, 537-547.	3.0	5
51	Bronchial vasodilatory response to ionic and nonionic contrast media. Journal of Applied Physiology, 1997, 82, 841-845.	2.5	9
52	Mucosal Folding and Airway Smooth Muscle Shortening. Chest, 1995, 107, 88S.	0.8	4