
Elda Arrigoni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4498266/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Neural Circuitry of Wakefulness and Sleep. Neuron, 2017, 93, 747-765.	8.1	614
2	The GABAergic parafacial zone is a medullary slow wave sleep–promoting center. Nature Neuroscience, 2014, 17, 1217-1224.	14.8	245
3	Basal forebrain control of wakefulness and cortical rhythms. Nature Communications, 2015, 6, 8744.	12.8	223
4	Hippocampal synaptic plasticity and spatial learning are impaired in a rat model of sleep fragmentation. European Journal of Neuroscience, 2006, 23, 2739-2748.	2.6	185
5	Galanin neurons in the ventrolateral preoptic area promote sleep and heat loss in mice. Nature Communications, 2018, 9, 4129.	12.8	176
6	Cholinergic, Glutamatergic, and GABAergic Neurons of the Pedunculopontine Tegmental Nucleus Have Distinct Effects on Sleep/Wake Behavior in Mice. Journal of Neuroscience, 2017, 37, 1352-1366.	3.6	156
7	Supramammillary glutamate neurons are a key node of the arousal system. Nature Communications, 2017, 8, 1405.	12.8	131
8	Orexin receptor 2 expression in the posterior hypothalamus rescues sleepiness in narcoleptic mice. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4471-4476.	7.1	122
9	To eat or to sleep: That is a lateral hypothalamic question. Neuropharmacology, 2019, 154, 34-49.	4.1	101
10	Role of the Medial Prefrontal Cortex in Cataplexy. Journal of Neuroscience, 2013, 33, 9743-9751.	3.6	93
11	Focal Deletion of the Adenosine A1 Receptor in Adult Mice Using an Adeno-Associated Viral Vector. Journal of Neuroscience, 2003, 23, 5762-5770.	3.6	92
12	Melanin-Concentrating Hormone Neurons Release Glutamate for Feedforward Inhibition of the Lateral Septum. Journal of Neuroscience, 2015, 35, 3644-3651.	3.6	85
13	Optogenetic-Mediated Release of Histamine Reveals Distal and Autoregulatory Mechanisms for Controlling Arousal. Journal of Neuroscience, 2014, 34, 6023-6029.	3.6	82
14	Melanin-concentrating hormone neurons specifically promote rapid eye movement sleep in mice. Neuroscience, 2016, 336, 102-113.	2.3	80
15	Suprachiasmatic VIP neurons are required for normal circadian rhythmicity and comprised of molecularly distinct subpopulations. Nature Communications, 2020, 11, 4410.	12.8	72
16	Adenosine-Mediated Presynaptic Modulation of Glutamatergic Transmission in the Laterodorsal Tegmentum. Journal of Neuroscience, 2001, 21, 1076-1085.	3.6	66
17	Identification of a direct <scp>GABA</scp> ergic pallidocortical pathway in rodents. European Journal of Neuroscience, 2015, 41, 748-759.	2.6	66
18	The anatomical, cellular and synaptic basis of motor atonia during rapid eye movement sleep. Journal of Physiology, 2016, 594, 5391-5414.	2.9	63

Elda Arrigoni

#	Article	IF	CITATIONS
19	What optogenetic stimulation is telling us (and failing to tell us) about fast neurotransmitters and neuromodulators in brain circuits for wake–sleep regulation. Current Opinion in Neurobiology, 2014, 29, 165-171.	4.2	61
20	Schaffer collateral and perforant path inputs activate different subtypes of NMDA receptors on the same CA1 pyramidal cell. British Journal of Pharmacology, 2004, 142, 317-322.	5.4	59
21	An Inhibitory Lateral Hypothalamic-Preoptic Circuit Mediates Rapid Arousals from Sleep. Current Biology, 2019, 29, 4155-4168.e5.	3.9	51
22	Adenosine Induces Inositol 1,4,5-Trisphosphate Receptor-Mediated Mobilization of Intracellular Calcium Stores in Basal Forebrain Cholinergic Neurons. Journal of Neuroscience, 2002, 22, 7680-7686.	3.6	44
23	Non-Crh Glutamatergic Neurons in Barrington's Nucleus Control Micturition via Glutamatergic Afferents from the Midbrain and Hypothalamus. Current Biology, 2019, 29, 2775-2789.e7.	3.9	44
24	Regulation of Lateral Hypothalamic Orexin Activity by Local GABAergic Neurons. Journal of Neuroscience, 2018, 38, 1588-1599.	3.6	42
25	A Glutamatergic Hypothalamomedullary Circuit Mediates Thermogenesis, but Not Heat Conservation, during Stress-Induced Hyperthermia. Current Biology, 2018, 28, 2291-2301.e5.	3.9	39
26	Role of serotonergic dorsal raphe neurons in hypercapnia-induced arousals. Nature Communications, 2020, 11, 2769.	12.8	38
27	Reassessing the Role of Histaminergic Tuberomammillary Neurons in Arousal Control. Journal of Neuroscience, 2019, 39, 8929-8939.	3.6	32
28	Genetic Activation, Inactivation, and Deletion Reveal a Limited And Nuanced Role for Somatostatin-Containing Basal Forebrain Neurons in Behavioral State Control. Journal of Neuroscience, 2018, 38, 5168-5181.	3.6	30
29	Descending projections from the basal forebrain to the orexin neurons in mice. Journal of Comparative Neurology, 2017, 525, 1668-1684.	1.6	27
30	Orexin neurons inhibit sleep to promote arousal. Nature Communications, 2022, 13, .	12.8	27
31	Low-voltage activated calcium channels are differently affected by nimodipine. NeuroReport, 1993, 5, 145-147.	1.2	16
32	Longâ€ŧerm synaptic plasticity is impaired in rats with lesions of the ventrolateral preoptic nucleus. European Journal of Neuroscience, 2009, 30, 2112-2120.	2.6	15
33	The Sleep-Promoting Ventrolateral Preoptic Nucleus: What Have We Learned over the Past 25 Years?. International Journal of Molecular Sciences, 2022, 23, 2905.	4.1	14
34	Muscarinic Inhibition of Hypoglossal Motoneurons: Possible Implications for Upper Airway Muscle Hypotonia during REM Sleep. Journal of Neuroscience, 2019, 39, 7910-7919.	3.6	13
35	Nitric oxide-induced adenosine inhibition of hippocampal synaptic transmission depends on adenosine kinase inhibition and is cyclic GMP independent. European Journal of Neuroscience, 2006, 24, 2471-2480.	2.6	12
36	Calcium influx in rat thalamic relay neurons through voltage-dependent calcium channels is inhibited by enkephalin. Neuroscience Letters, 1995, 201, 21-24.	2.1	9

Elda Arrigoni

#	Article	IF	CITATIONS
37	The Role of the Central Histaminergic System in Behavioral State Control. Current Topics in Behavioral Neurosciences, 2021, , 447-468.	1.7	3
38	The Circuit, Cellular, and Synaptic Bases of Sleep-Wake Regulation. Handbook of Behavioral Neuroscience, 2019, , 65-88.	0.7	2
39	Addicted to dreaming. Science, 2022, 375, 972-973.	12.6	2
40	066 Noradrenaline and acetylcholine inhibit sleep-promoting neurons of ventrolateral preoptic area through a local GABAergic circuit. Sleep, 2021, 44, A27-A28.	1.1	1
41	0141 Ascending Projections From Parafacial Zone To The Medial Parabrachial Neurons. Sleep, 2019, 42, A58-A58.	1.1	0
42	026 Vasoactive Intestinal Polypeptide Directly Excites Neurons of the Subparaventricular Zone. Sleep, 2021, 44, A12-A12.	1.1	0
43	074 Basal Forebrain CABAergic Neurons Promote Arousal by Disinhibiting the Orexin Neurons via Local CABAergic Interneurons, Sleep, 2021, 44, A31-A31,	1,1	0