Jeremy Patrick Milroy Whish

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/449802/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	APSIM – Evolution towards a new generation of agricultural systems simulation. Environmental Modelling and Software, 2014, 62, 327-350.	1.9	1,173
2	Modelling the impacts of pests and diseases on agricultural systems. Agricultural Systems, 2017, 155, 213-224.	3.2	248
3	Comparison of sensitive stages of wheat, barley, canola, chickpea and field pea to temperature and water stress across Australia. Agricultural and Forest Meteorology, 2018, 248, 275-294.	1.9	95
4	Re-inventing model-based decision support with Australian dryland farmers. 3. Relevance of APSIM to commercial crops. Crop and Pasture Science, 2009, 60, 1044.	0.7	80
5	Modelling the effects of row configuration on sorghum yield reliability in north-eastern Australia. Australian Journal of Agricultural Research, 2005, 56, 11.	1.5	68
6	Strategic tillage in conservation agricultural systems of north-eastern Australia: why, where, when and how?. Environmental Science and Pollution Research, 2018, 25, 1000-1015.	2.7	53
7	Whole-farm economic, risk and resource-use trade-offs associated with integrating forages into crop–livestock systems in western China. Agricultural Systems, 2015, 133, 63-72.	3.2	45
8	Prospects to utilise intercrops and crop variety mixtures in mechanised, rain-fed, temperate cropping systems. Crop and Pasture Science, 2016, 67, 1252.	0.7	39
9	Integrating pest population models with biophysical crop models to better represent the farming system. Environmental Modelling and Software, 2015, 72, 418-425.	1.9	37
10	Defining optimal sowing and flowering periods for canola in Australia. Field Crops Research, 2019, 235, 118-128.	2.3	37
11	Indices of forage nutritional yield and water use efficiency amongst spring-sown annual forage crops in north-west China. European Journal of Agronomy, 2018, 93, 1-10.	1.9	36
12	The effect of row spacing and weed density on yield loss of chickpea. Australian Journal of Agricultural Research, 2002, 53, 1335.	1.5	35
13	Whole-farm effects of livestock intensification in smallholder systems in Gansu, China. Agricultural Systems, 2012, 109, 16-24.	3.2	35
14	Forage production, quality and water-use-efficiency of four warm-season annual crops at three sowing times in the Loess Plateau region of China. European Journal of Agronomy, 2017, 84, 84-94.	1.9	35
15	Dual-purpose use of winter wheat in western China: cutting time and nitrogen application effects on phenology, forage production, and grain yield. Crop and Pasture Science, 2012, 63, 520.	0.7	34
16	Pratylenchus thornei populations reduce water uptake in intolerant wheat cultivars. Field Crops Research, 2014, 161, 1-10.	2.3	32
17	Deep drainage rates of Grey Vertosols depend on land use in semi-arid subtropical regions of Queensland, Australia. Soil Research, 2011, 49, 424.	0.6	27
18	Do spring cover crops rob water and so reduce wheat yields in the northern grain zone of eastern Australia?. Crop and Pasture Science, 2009, 60, 517.	0.7	23

#	Article	IF	CITATIONS
19	Managing production constraints to the reliability of chickpea (Cicer arietinum L.) within marginal areas of the northern grains region of Australia. Australian Journal of Agricultural Research, 2007, 58, 396.	1.5	22
20	Designing better on-farm research in Australia using a participatory workshop process. Field Crops Research, 2007, 104, 157-164.	2.3	21
21	ON-FARM ASSESSMENT OF CONSTRAINTS TO CHICKPEA (CICER ARIETINUM) PRODUCTION IN MARGINAL AREAS OF NORTHERN AUSTRALIA. Experimental Agriculture, 2007, 43, 505-520.	0.4	19
22	Survival of root-lesion nematodes (<i>Pratylenchus thornei</i>) after wheat growth in a vertisol is influenced by rate of progressive soil desiccation. Annals of Applied Biology, 2017, 170, 78-88.	1.3	17
23	Plant development and solar radiation interception of four annual forage plants in response to sowing date in a semi-arid environment. Industrial Crops and Products, 2019, 131, 41-53.	2.5	17
24	Cropping system yield gaps can be narrowed with more optimal rotations in dryland subtropical Australia. Agricultural Systems, 2020, 184, 102896.	3.2	16
25	Predicting the slow decline of root lesion nematodes (Pratylenchus thornei) during host-free fallows to improve farm management decisions. European Journal of Agronomy, 2017, 91, 44-53.	1.9	13
26	Management practices that maximise gross margins in Australian canola (Brassica napus L.). Field Crops Research, 2020, 252, 107803.	2.3	13
27	Above- and belowground dry matter partitioning of four warm-season annual crops sown on different dates in a semiarid region. European Journal of Agronomy, 2019, 109, 125918.	1.9	12
28	Vernalisation in Australian spring canola explains variable flowering responses. Field Crops Research, 2020, 258, 107968.	2.3	9
29	Lucerne improves some sustainability indicators but may decrease profitability of cropping rotations on the Jimbour Plain. Australian Journal of Experimental Agriculture, 2005, 45, 651.	1.0	8
30	Optimal harvest timing vs. harvesting for animal forage supply: Impacts on production and quality of lucerne on the Loess Plateau, China. Grass and Forage Science, 2015, 70, 296-307.	1.2	7
31	Survival of root-lesion nematode Pratylenchus neglectus during progressive soil desiccation after growth of wheat in a vertisol. Biology and Fertility of Soils, 2017, 53, 357-366.	2.3	5

32 Elevated temperature reduces survival of peak populations of root-lesion nematodes (Pratylenchus) Tj ETQq0 0 0 rgBJ /Overlgck 10 Tf 5