Haifeng Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4497990/publications.pdf

Version: 2024-02-01

		172457		233421	
80	2,307	29		45	
papers	citations	h-index		g-index	
			_		
80	80	80		2261	

times ranked

citing authors

docs citations

all docs

#	Article	IF	Citations
1	Fabrication of nitrogen-doped graphene nanosheets anchored with carbon nanotubes for the degradation of tetracycline in saline water. Environmental Research, 2022, 206, 112242.	7. 5	15
2	The finite-difference time-domain (FDTD) guided preparation of Ag nanostructures on Ti substrate for sensitive SERS detection of small molecules. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 269, 120743.	3.9	13
3	Cadmium induced aggregation of orange–red emissive carbon dots with enhanced fluorescence for intracellular imaging. Journal of Hazardous Materials, 2022, 427, 128092.	12.4	34
4	The enzymatic performance derived from the lattice planes of Ir nanoparticles. Catalysis Science and Technology, 2022, 12, 1017-1024.	4.1	3
5	"Light on―fluorescence carbon dots with intramolecular hydrogen bond-regulated co-planarization for cell imaging and temperature sensing. Journal of Materials Chemistry A, 2022, 10, 2085-2095.	10.3	28
6	Template-Free Synthesis of Porous Fluorescent Carbon Nanomaterials with Gluten for Intracellular Imaging and Drug Delivery. ACS Applied Materials & Samp; Interfaces, 2022, 14, 21310-21318.	8.0	20
7	Preparation of a Novel Solid Phase Microextraction Fiber for Headspace GC-MS Analysis of Hazardous Odorants in Landfill Leachate. Processes, 2022, 10, 1045.	2.8	1
8	Protein-stabilized Ir nanoparticles with usual charge-selective peroxidase properties. Journal of Materials Chemistry B, 2021, 9, 8464-8471.	5.8	2
9	Phosphate-Assisted Transformation of Methylene Blue to Red-Emissive Carbon Dots with Enhanced Singlet Oxygen Generation for Photodynamic Therapy. ACS Applied Nano Materials, 2021, 4, 4820-4828.	5.0	30
10	A facile electroless preparation of Cu, Sn and Sb oxides coated Ti electrode for electrocatalytic degradation of organic pollutants. Science of the Total Environment, 2021, 772, 144908.	8.0	19
11	Electrochemical Detection of Phosphate Ion in Body Fluids with a Magnesium Phosphate Modified Electrode. Analytical Sciences, 2021, 37, 1247-1252.	1.6	4
12	Luminescent Chemosensor Based on Ru(II) Bipyridine Complex for Detection of Sudan I through Inner Filter Effect. Journal of Fluorescence, 2020, 30, 1543-1551.	2.5	5
13	Aggregation-Induced Room-Temperature Phosphorescence Obtained from Water-Dispersible Carbon Dot-Based Composite Materials. ACS Applied Materials & Samp; Interfaces, 2020, 12, 10791-10800.	8.0	96
14	Direct Electrochemical Sensing of Phosphate in Aqueous Solutions Based on Phase Transition of Calcium Phosphate. ACS Sensors, 2020, 5, 541-548.	7.8	24
15	Highly selective detection of l-Phenylalanine by molecularly imprinted polymers coated Au nanoparticles via surface-enhanced Raman scattering. Talanta, 2020, 211, 120745.	5. 5	24
16	Simple multistep assembly of hybrid carbon material based microelectrode for highly sensitive detection of neurotransmitters. Journal of Electroanalytical Chemistry, 2020, 863, 114082.	3.8	6
17	Red emissive carbon dots obtained from direct calcination of 1,2,4-triaminobenzene for dual-mode pH sensing in living cells. New Journal of Chemistry, 2020, 44, 7210-7217.	2.8	18
18	Formation and phase evolution of calcium phosphates modulated by ion exchange ionomer Nafion. CrystEngComm, 2020, 22, 8243-8250.	2.6	2

#	Article	IF	Citations
19	In-situ dynamic reaction of Ag NPs: Strategy for the construction of a sensitive electrochemical chiral sensor. Sensors and Actuators B: Chemical, 2020, 319, 128315.	7.8	7
20	Potassium Ferrate(VI) as a Highly Efficient and Environmentally Friendly Chemiluminescence Reagent in Acidic Solution. Analytical Chemistry, 2019, 91, 12255-12259.	6.5	7
21	Temperature-controlled spectral tuning of full-color carbon dots and their strongly fluorescent solid-state polymer composites for light-emitting diodes. Nanoscale Advances, 2019, 1, 1413-1420.	4.6	54
22	A novel cyclometallated iridium(iii) complex based dual-mode phosphorescent probe for detection of acidity and bovine serum albumin. Analytical Methods, 2019, 11, 3033-3040.	2.7	6
23	Polymer-Assisted Self-Assembly of Multicolor Carbon Dots as Solid-State Phosphors for Fabrication of Warm, High-Quality, and Temperature-Responsive White-Light-Emitting Devices. ACS Applied Materials & Devices. ACS Applied Material	8.0	51
24	Controlling the color of tin coating on brass by electroless plating. Chemical Papers, 2019, 73, 1863-1869.	2.2	5
25	Catalytic Oxidation of Trichloroethylene over RuO2 Supported on Ceria-zirconia Mixed Oxide. Chemical Research in Chinese Universities, 2019, 35, 71-78.	2.6	3
26	Controllable etching-induced contact enhancement for high-performance carbon nanotube thin-film transistors. RSC Advances, 2019, 9, 10578-10583.	3.6	1
27	Assembly of aligned semiconducting carbon nanotubes in organic solvents via introducing inter-tube electrostatic repulsion. Carbon, 2019, 146, 172-180.	10.3	11
28	Loss of ubiquitin-conjugating enzyme E2 (Ubc9) in macrophages exacerbates multiple low-dose streptozotocin-induced diabetes by attenuating M2 macrophage polarization. Cell Death and Disease, 2019, 10, 892.	6.3	44
29	Rational selection of the monomer for molecularly imprinted polymer preparation for selective and sensitive detection of 3-methylindole in water. Journal of Electroanalytical Chemistry, 2019, 832, 129-136.	3.8	18
30	Water-Soluble and Low-Toxic Ionic Polymer Dots as Invisible Security Ink for MultiStage Information Encryption. ACS Applied Materials & Encryption.	8.0	39
31	A highly active K/Cu-Mn-O catalyst for the removal of nitric oxide in indoor air. Indoor and Built Environment, 2019, 28, 7-16.	2.8	5
32	Rational Design of Magnetic Micronanoelectrodes for Recognition and Ultrasensitive Quantification of Cysteine Enantiomers. Analytical Chemistry, 2018, 90, 3374-3381.	6.5	44
33	Facile fabrication of superhydrophilic and underwater superoleophobic chitosan–polyvinyl alcohol-TiO2 coated copper mesh for efficient oil/water separation. Journal of Coatings Technology Research, 2018, 15, 1013-1023.	2.5	18
34	Novel tungsten phosphide embedded nitrogen-doped carbon nanotubes: A portable and renewable monitoring platform for anticancer drug in whole blood. Biosensors and Bioelectronics, 2018, 105, 226-235.	10.1	27
35	Rapid Visualization of Latent Fingerprints with Color†unable Solid Fluorescent Carbon Dots. Particle and Particle Systems Characterization, 2018, 35, 1700387.	2.3	43
36	Fluorescent iridium nanoclusters for selective determination of chromium(VI). Mikrochimica Acta, 2018, 185, 8.	5.0	30

#	Article	IF	Citations
37	Shell-encoded Au nanoparticles with tunable electroactivity for specific dual disease biomarkers detection. Biosensors and Bioelectronics, 2018, 99, 193-200.	10.1	49
38	Electroactive Au@Ag nanoparticles driven electrochemical sensor for endogenous H2S detection. Biosensors and Bioelectronics, 2018, 117, 53-59.	10.1	80
39	Controllable design of polycrystalline synergies: Hybrid FeOx nanoparticles applicable to electrochemical sensing antineoplastic drug in mammalian cells. Sensors and Actuators B: Chemical, 2018, 275, 1-9.	7.8	5
40	Rapid and selective luminescent sensing of allergenic gluten by highly phosphorescent switch-on probe. Talanta, 2018, 190, 292-297.	5 . 5	4
41	A water-soluble and highly phosphorescent cyclometallated iridium complex with versatile sensing capability. Talanta, 2017, 166, 169-175.	5.5	7
42	Uniformly distributed and in situ iron–nitrogen co-doped porous carbon derived from pork liver for rapid and simultaneous detection of dopamine, uric acid, and paracetamol in human blood serum. New Journal of Chemistry, 2017, 41, 2081-2089.	2.8	17
43	Detection of latent fingerprints based on gas phase adsorption of NO and subsequent application of an ultrasonically nebulized fluorescent probe. Analytical Methods, 2017, 9, 1611-1616.	2.7	6
44	Recycling Strategy for Fabricating Low-Cost and High-Performance Carbon Nanotube TFT Devices. ACS Applied Materials & Devices, 2017, 9, 15719-15726.	8.0	30
45	Preparation of Nitrogen and FeP Doped Carbon Nanotubes for Selective and Simultaneous Electrochemical Detection of Dihydroxybenzoic Acid Isomers. Electrochimica Acta, 2017, 242, 107-116.	5.2	10
46	Copper nanoparticles modified nitrogen doped reduced graphene oxide 3-D superstructure for simultaneous determination of dihydroxybenzene isomers. Sensors and Actuators B: Chemical, 2017, 249, 405-413.	7.8	47
47	Bi-functional fluorescent polymer dots: a one-step synthesis via controlled hydrothermal treatment and application as probes for the detection of temperature and Fe ³⁺ . Journal of Materials Chemistry C, 2017, 5, 434-443.	5.5	38
48	The oxidase-like activity of iridium nanoparticles, and their application to colorimetric determination of dissolved oxygen. Mikrochimica Acta, 2017, 184, 3113-3119.	5.0	39
49	Tunable preparation of ruthenium nanoparticles with superior size-dependent catalytic hydrogenation properties. Journal of Hazardous Materials, 2017, 332, 124-131.	12.4	38
50	Sensitive Colorimetric Assay of H ₂ S Depending on the High-Efficient Inhibition of Catalytic Performance of Ru Nanoparticles. ACS Sustainable Chemistry and Engineering, 2017, 5, 7912-7919.	6.7	34
51	Self-template synthesis of biomass-derived 3D hierarchical N-doped porous carbon for simultaneous determination of dihydroxybenzene isomers. Scientific Reports, 2017, 7, 14985.	3.3	21
52	Biomimetic Gastrointestinal Tract Functions for Metal Absorption Assessment in Edible Plants: Comparison to <i>In Vivo</i> Absorption. Journal of Agricultural and Food Chemistry, 2017, 65, 6282-6287.	5.2	3
53	Dynamic Chiral Nanoparticle Assemblies and Specific Chiroplasmonic Analysis of Cancer Cells. Advanced Materials, 2016, 28, 4877-4883.	21.0	48
54	Controlled growth of MoS ₂ nanopetals and their hydrogen evolution performance. RSC Advances, 2016, 6, 18483-18489.	3.6	32

#	Article	IF	Citations
55	Synthesis of 2.5Ânm colloidal iridium nanoparticles with strong surface enhanced Raman scattering activity. Mikrochimica Acta, 2016, 183, 2047-2053.	5.0	19
56	Polycrystalline iron oxide nanoparticles prepared by C-dot-mediated aggregation and reduction for supercapacitor application. RSC Advances, 2016, 6, 45023-45030.	3.6	16
57	A 3D Co–CN framework as a high performance electrocatalyst for the hydrogen evolution reaction. RSC Advances, 2016, 6, 42014-42018.	3.6	22
58	Graphene Hybrid Aerogels Made via Phase Transfer Strategy. Advanced Materials Interfaces, 2016, 3, 1600541.	3.7	5
59	Hybrid Aerogels: Graphene Hybrid Aerogels Made via Phase Transfer Strategy (Adv. Mater. Interfaces) Tj ETQq1 1	0.784314	rgBT /Overl
60	Interfacial synthesis of polyethyleneimine-protected copper nanoclusters: Size-dependent tunable photoluminescence, pH sensor and bioimaging. Colloids and Surfaces B: Biointerfaces, 2016, 140, 373-381.	5.0	58
61	Porous Fe-Nx/C hybrid derived from bi-metal organic frameworks as high efficient electrocatalyst for oxygen reduction reaction. Journal of Power Sources, 2016, 311, 137-143.	7.8	71
62	Lysine surface modified Fe3O4@SiO2@TiO2 microspheres-based preconcentration and photocatalysis for in situ selective determination of nanomolar dissolved organic and inorganic phosphorus in seawater. Sensors and Actuators B: Chemical, 2016, 224, 48-54.	7.8	19
63	A fluorescent biosensor of lysozyme-stabilized copper nanoclusters for the selective detection of glucose. RSC Advances, 2015, 5, 101599-101606.	3.6	50
64	Synthesis of cysteine-functionalized water-soluble luminescent copper nanoclusters and their application to the determination of chromium(VI). Mikrochimica Acta, 2015, 182, 1371-1377.	5.0	83
65	One-step synthesis of fluorescent smart thermo-responsive copper clusters: A potential nanothermometer in living cells. Nano Research, 2015, 8, 1975-1986.	10.4	130
66	Gold nanoclusters decorated with magnetic iron oxide nanoparticles for potential multimodal optical/magnetic resonance imaging. Journal of Materials Chemistry C, 2015, 3, 5910-5917.	5.5	45
67	Au nanoflower–Ag nanoparticle assembled SERS-active substrates for sensitive MC-LR detection. Chemical Communications, 2015, 51, 16908-16911.	4.1	63
68	Double Detection of Mycotoxins Based on SERS Labels Embedded Ag@Au Core–Shell Nanoparticles. ACS Applied Materials & Double Samp; Interfaces, 2015, 7, 21780-21786.	8.0	175
69	Au NPs driven electrochemiluminescence aptasensors for sensitive detection of fumonisin B1. RSC Advances, 2014, 4, 57709-57714.	3.6	29
70	Immobilization of a water insoluble iridium complex with organosilica nanoparticles for electrochemiluminescence sensing. Analytical Methods, 2014, 6, 5258.	2.7	10
71	Flow Injection Determination of the Alkaline Compositions in Boiler Water Based on the Response Curve Modeling. Arabian Journal for Science and Engineering, 2014, 39, 6777-6782.	1.1	0
72	Waterâ€Soluble and Lowly Toxic Sulphur Quantum Dots. Advanced Functional Materials, 2014, 24, 7133-7138.	14.9	93

#	ARTICLE	IF	CITATION
73	Simultaneous determination of ascorbic acid, dopamine, and uric acid based on double-walled carbon nanotubes/choline-modified electrode. Analytical Methods, 2013, 5, 2335.	2.7	23
74	Detection of hidden drugs with a molecularly imprinted electrochemiluminescence sensor. Analytical Methods, 2013, 5, 6064.	2.7	11
75	Sensitive determination of total microcystins with GC-MS method by using methylchloroformate as a derivatizing reagent. Analytical Methods, 2013, 5, 1799.	2.7	9
76	Quantum dot induced phototransformation of 2,4-dichlorophenol, and its subsequent chemiluminescence reaction. Mikrochimica Acta, 2012, 178, 203-210.	5.0	7
77	Amidate Iridium(III) Bis(2-pyridyl)phenyl Complexes: Application Examples of Amidate Ancillary Ligands in Iridium(III)-Cyclometalated Complexes. Organometallics, 2011, 30, 77-83.	2.3	55
78	Electrochemiluminescence (ECL) Detection of Ammonium Ion Based on a Novel Iridium Complex Modified Electrode. Analytical Letters, 2011, 44, 2503-2512.	1.8	5
79	Photo-polymerization of triclosan in aqueous solution induced by ultraviolet radiation. Environmental Chemistry Letters, 2010, 8, 33-37.	16.2	24
80	Photolytic degradation of triclosan in the presence of surfactants. Chemical Papers, 2008, 62, .	2.2	19