MiloÅ[^] DvoÅÃ^Mk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4497706/publications.pdf Version: 2024-02-01

ΜιιοΔ^ ΡνοΔ™Ã:κ

#	Article	IF	CITATIONS
1	Detection of Airborne Inoculum of Hymenoscyphus fraxineus and H. albidus during Seasonal Fluctuations Associated with Absence of Apothecia. Forests, 2016, 7, 1.	2.1	287
2	Detection and quantification of airborne inoculum of <i><scp>H</scp>ymenoscyphus pseudoalbidus</i> using realâ€time <scp>PCR</scp> assays. Plant Pathology, 2014, 63, 1296-1305.	2.4	65
3	Global Geographic Distribution and Host Range of Fusarium circinatum, the Causal Agent of Pine Pitch Canker. Forests, 2020, 11, 724.	2.1	45
4	Unseen, but still present in Czechia: Hymenoscyphus albidus detected by real-time PCR, but not by intensive sampling. Mycological Progress, 2016, 15, 1.	1.4	24
5	Transferability of PCR-based diagnostic protocols: An international collaborative case study assessing protocols targeting the quarantine pine pathogen Fusarium circinatum. Scientific Reports, 2019, 9, 8195.	3.3	22
6	Spore Dispersal Patterns of Fusarium circinatum on an Infested Monterey Pine Forest in North-Western Spain. Forests, 2017, 8, 432.	2.1	20
7	Sap flow-based quantitative indication of progression of Dutch elm disease after inoculation with Ophiostoma novo-ulmi. Trees - Structure and Function, 2014, 28, 1599-1605.	1.9	19
8	Pine Pitch Canker (PPC): Pathways of Pathogen Spread and Preventive Measures. Forests, 2019, 10, 1158.	2.1	19
9	Leaf trait dissimilarities between Dutch elm hybrids with a contrasting tolerance to Dutch elm disease. Annals of Botany, 2013, 111, 215-227.	2.9	18
10	Evaluation of the Susceptibility of Several Czech Conifer Provenances to Fusarium circinatum. Forests, 2018, 9, 72.	2.1	18
11	Multiplex real-time PCR for the detection of Clavibacter michiganensis subsp. michiganensis, Pseudomonas syringae pv. tomato and pathogenic Xanthomonas species on tomato plants. PLoS ONE, 2020, 15, e0227559.	2.5	12
12	Dothistroma septosporum: spore production and weather conditions. Forest Systems, 2012, 21, .	0.3	12
13	The occurrence of endophytic fungus Phomopsis oblonga on elms in the area of southern Bohemia. Journal of Forest Science, 2006, 52, 531-535.	1.1	11
14	Long-term impact ofOphiostoma novo-ulmion leaf traits and transpiration of branches in the Dutch elm hybrid â€~Dodoens'. Tree Physiology, 2016, 36, 335-344.	3.1	7
15	OCCLUSION OF SAP FLOW IN ELM AFTER ARTIFICIAL INOCULATION WITH OPHIOSTOMA NOVO-ULMI. Acta Horticulturae, 2013, , 301-306.	0.2	6
16	Detection and quantification of the air inoculum of Caliciopsis pinea in a plantation of Pinus radiata in Italy. IForest, 2019, 12, 193-198.	1.4	6
17	ADA, a fastâ€growth medium for <i>Hymenoscyphus fraxineus</i> . Forest Pathology, 2016, 46, 85-87.	1.1	4
18	Effect of temperature on <scp>G</scp> a <scp>RV</scp> 6 accumulation and its fungal host, the conifer pathogen <i>Gremmeniella abietina</i> . Forest Pathology, 2017, 47, e12291.	1.1	4

#	Article	IF	CITATIONS
19	Effects of Phytophthora Inoculations on Photosynthetic Behaviour and Induced Defence Responses of Plant Volatiles in Field-Grown Hybrid Poplar Tolerant to Bark Canker Disease. Journal of Fungi (Basel,) Tj ETQq1 1 ().384314	rgBT /Overic
20	Different Responses in Vascular Traits between Dutch Elm Hybrids with a Contrasting Tolerance to Dutch Elm Disease. Journal of Fungi (Basel, Switzerland), 2022, 8, 215.	3.5	2
21	Detection of Airborne Inoculum of Hymenoscyphus fraxineus: The Causal Agent of Ash Dieback. Methods in Molecular Biology, 2022, , 119-137.	0.9	1