Sivacarendran Balendhran

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4497653/publications.pdf

Version: 2024-02-01

56 5,255 35
papers citations h-index

54
g-index

8318
d citing authors

161849

59 all docs

59 docs citations 59 times ranked

#	Article	IF	CITATIONS
1	Mixed Ionicâ€Electronic Charge Transport in Layered Blackâ€Phosphorus for Lowâ€Power Memory. Advanced Functional Materials, 2022, 32, 2107068.	14.9	16
2	Compact Chemical Identifier Based on Plasmonic Metasurface Integrated with Microbolometer Array. Laser and Photonics Reviews, 2022, 16, .	8.7	17
3	Compact Chemical Identifier Based on Plasmonic Metasurface Integrated with Microbolometer Array (Laser Photonics Rev. 16(4)/2022). Laser and Photonics Reviews, 2022, 16, 2270016.	8.7	0
4	Nonvolatile Resistive Switching in Layered InSe via Electrochemical Cation Diffusion. Advanced Electronic Materials, 2022, 8, .	5.1	8
5	Experimental and theoretical characterization of x-ray induced excitons, magnons, and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>d</mml:mi>d< transitions in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>MoO</mml:mi><mml:mn>3<mml:mi>MoO</mml:mi><mml:mn>3<mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:< td=""><td>2.4</td><td>О</td></mml:<></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:mn></mml:mn></mml:msub></mml:math></mml:mrow></mml:math>	2.4	О
6	nanosheets. Physical Review Materials, 2022, 6, . Midâ€Wave Infrared Polarizationâ€Independent Graphene Photoconductor with Integrated Plasmonic Nanoantennas Operating at Room Temperature. Advanced Optical Materials, 2021, 9, 2001854.		11
7	Long-Wave Infrared Photodetectors Based on 2D Platinum Diselenide atop Optical Cavity Substrates. ACS Nano, 2021, 15, 6573-6581.	14.6	29
8	Light–Matter Interaction Enhancement in Anisotropic 2D Black Phosphorus via Polarization-Tailoring Nano-Optics. ACS Photonics, 2021, 8, 1120-1128.	6.6	20
9	Longwave Infrared Photoresponse in Copper 7,7,8,8-tetracyano-2,3,5,6-tetraflouroquinodimethane (CuTCNQF4)., 2021,,.		O
10	Actively variable-spectrum optoelectronics with black phosphorus. Nature, 2021, 596, 232-237.	27.8	132
11	Copper Tetracyanoquinodimethane (CuTCNQ): A Metal–Organic Semiconductor for Room-Temperature Visible to Long-Wave Infrared Photodetection. ACS Applied Materials & Samp; Interfaces, 2021, 13, 38544-38552.	8.0	10
12	Visible to Short-Wave Infrared Photodetectors Based on ZrGeTe ₄ van der Waals Materials. ACS Applied Materials & Samp; Interfaces, 2021, 13, 45881-45889.	8.0	7
13	Helicity-selective Raman scattering from in-plane anisotropic α-MoO3. Applied Physics Letters, 2021, 119, .	3.3	6
14	Charge injection in vertically stacked multi-layer black phosphorus. Applied Materials Today, 2020, 18, 100481.	4.3	1
15	Broadband Photodetectors: Liquidâ€Metal Synthesized Ultrathin SnS Layers for Highâ€Performance Broadband Photodetectors (Adv. Mater. 45/2020). Advanced Materials, 2020, 32, 2070338.	21.0	2
16	Liquidâ€Metal Synthesized Ultrathin SnS Layers for Highâ€Performance Broadband Photodetectors. Advanced Materials, 2020, 32, e2004247.	21.0	66
17	Spectrally Selective Mid-Wave Infrared Detection Using Fabry-Pérot Cavity Enhanced Black Phosphorus 2D Photodiodes. ACS Nano, 2020, 14, 13645-13651.	14.6	41
18	Edge-oriented and steerable hyperbolic polaritons in anisotropic van der Waals nanocavities. Nature Communications, 2020, 11 , 6086 .	12.8	67

#	Article	IF	Citations
19	Monocrystalline Antimonene Nanosheets via Physical Vapor Deposition. Advanced Materials Interfaces, 2020, 7, 2001678.	3.7	14
20	Electrically Activated UV-A Filters Based on Electrochromic MoO _{3–<i>×</i>} . ACS Applied Materials & Activated UV-A Filters Based on Electrochromic MoO _{3–<i>×</i>} . ACS Applied Materials & Activated UV-A Filters Based on Electrochromic MoO _{3–<i>×</i>} . ACS Applied Materials & Activated UV-A Filters Based on Electrochromic MoO _{3–<i>×</i>} . ACS Applied Materials & Activated UV-A Filters Based on Electrochromic MoO _{3–<i>×</i>} . ACS Applied Materials & Activated UV-A Filters Based on Electrochromic MoO _{3–<i>×</i>} . ACS Applied Materials & Activated UV-A Filters Based on Electrochromic MoO _{3–<i>×</i>} . ACS Applied Materials & Activated UV-A Filters Based on Electrochromic MoO _{3–<i>×</i>} . ACS Applied UV-A Filters Based on Electrochromic MoO _{3–<i>×</i>} . ACS Applied UV-A Filters Based on Electrochromic MoO _{3—} . ACS Applied UV-A Filters Based on Electrochromic MoO _{3—} . ACS Applied UV-A Filters Based on Electrochromic MoO _{3—} . ACS Applied UV-A Filters Based on Electrochromic MoO _{3—} . ACS Applied UV-A Filters Based on Electrochromic MoO _{3—} . ACS Applied UV-A Filters Based on Electrochromic MoO _{3—} . ACS Applied UV-A Filters Based on Electrochromic MoO _{3—} . ACS Applied UV-A Filters Based on Electrochromic MoO _{3—} . ACS Applied UV-A Filters Based on Electrochromic MoO _{3—} . ACS Applied UV-A Filters Based on Electrochromic MoO _{3—} . ACS Applied UV-A Filters Based on Electrochromic MoO _{3—} . ACS Applied UV-A Filters Based on Electrochromic MoO _{3—} . ACS Applied UV-A Filters Based on Electrochromic MoO _{3—} . ACS Applied UV-A Filters Based on Electrochromic MoO _{3â§} . ACS Applied UV-A Filters Based on Electrochromic MoO _{3â§} . ACS Applied UV-A Filters Based on Electrochromic MoO _{3â§} . ACS Applied UV-A Filters Based on Electrochromic MoO _{3â§} . ACS Applied UV-A Filte	8.0	45
21	Visible to Long-Wave Infrared Photodetectors based on Copper Tetracyanoquinodimethane (CuTCNQ) Crystals., 2020,,.		O
22	Dual Selective Gas Sensing Characteristics of 2D α-MoO _{3â€"<i>x</i>} via a Facile Transfer Process. ACS Applied Materials & Distriction (11, 40189-40195).	8.0	47
23	Large-area synthesis of 2D MoO _{3â^' <i>x</i>} for enhanced optoelectronic applications. 2D Materials, 2019, 6, 035031.	4.4	48
24	Generating strong room-temperature photoluminescence in black phosphorus using organic molecules. 2D Materials, 2019, 6, 015009.	4.4	15
25	Black phosphorus: ambient degradation and strategies for protection. 2D Materials, 2018, 5, 032001.	4.4	119
26	Reversible resistive switching behaviour in CVD grown, large area MoO _x . Nanoscale, 2018, 10, 19711-19719.	5 . 6	46
27	Effects of plasma-treatment on the electrical and optoelectronic properties of layered black phosphorus. Applied Materials Today, 2018, 12, 244-249.	4.3	38
28	Ambient Protection of Fewâ€Layer Black Phosphorus via Sequestration of Reactive Oxygen Species. Advanced Materials, 2017, 29, 1700152.	21.0	141
29	Defining the role of humidity in the ambient degradation of few-layer black phosphorus. 2D Materials, 2017, 4, 015025.	4.4	110
30	Two-dimensional MoO ₃ via a top-down chemical thinning route. 2D Materials, 2017, 4, 035008.	4.4	14
31	Degradation of black phosphorus is contingent on UV–blue light exposure. Npj 2D Materials and Applications, 2017, 1, .	7.9	95
32	Highâ€Performance Field Effect Transistors Using Electronic Inks of 2D Molybdenum Oxide Nanoflakes. Advanced Functional Materials, 2016, 26, 91-100.	14.9	164
33	Donorâ€Induced Performance Tuning of Amorphous SrTiO ₃ Memristive Nanodevices: Multistate Resistive Switching and Mechanical Tunability. Advanced Functional Materials, 2015, 25, 3172-3182.	14.9	68
34	Low-Temperature Fabrication of Alkali Metal–Organic Charge Transfer Complexes on Cotton Textile for Optoelectronics and Gas Sensing. Langmuir, 2015, 31, 1581-1587.	3.5	51
35	Elemental Analogues of Graphene: Silicene, Germanene, Stanene, and Phosphorene. Small, 2015, 11, 640-652.	10.0	725
36	Two dimensional α-MoO3 nanoflakes obtained using solvent-assisted grinding and sonication method: Application for H2 gas sensing. Sensors and Actuators B: Chemical, 2014, 192, 196-204.	7.8	190

#	Article	IF	CITATIONS
37	Proton intercalated two-dimensional WO ₃ nano-flakes with enhanced charge-carrier mobility at room temperature. Nanoscale, 2014, 6, 15029-15036.	5.6	66
38	Nanoscale Resistive Switching in Amorphous Perovskite Oxide (⟨i⟩aâ€SrTiO⟨sub⟩3⟨/sub⟩) Memristors. Advanced Functional Materials, 2014, 24, 6741-6750.	14.9	111
39	CNT/PDMS composite membranes for H2 and CH4 gas separation. International Journal of Hydrogen Energy, 2013, 38, 10494-10501.	7.1	97
40	3-D nanorod arrays of metal–organic KTCNQ semiconductor on textiles for flexible organic electronics. RSC Advances, 2013, 3, 17654.	3.6	40
41	Semiconductors: Twoâ€Dimensional Molybdenum Trioxide and Dichalcogenides (Adv. Funct. Mater.) Tj ETQq1 1 0	.784314 r 14.9	gBT /Over
42	Electrochemical Control of Photoluminescence in Two-Dimensional MoS ₂ Nanoflakes. ACS Nano, 2013, 7, 10083-10093.	14.6	282
43	Field Effect Biosensing Platform Based on 2D α-MoO ₃ . ACS Nano, 2013, 7, 9753-9760.	14.6	161
44	Nanostructured copper oxides as ethanol vapour sensors. Sensors and Actuators B: Chemical, 2013, 185, 620-627.	7.8	118
45	Anodic formation of a thick three-dimensional nanoporous WO3 film and its photocatalytic property. Electrochemistry Communications, 2013, 27, 128-132.	4.7	58
46	Enhanced Charge Carrier Mobility in Twoâ€Dimensional High Dielectric Molybdenum Oxide. Advanced Materials, 2013, 25, 109-114.	21.0	355
47	Twoâ€Dimensional Molybdenum Trioxide and Dichalcogenides. Advanced Functional Materials, 2013, 23, 3952-3970.	14.9	443
48	Engineering electrodeposited ZnO films and their memristive switching performance. Physical Chemistry Chemical Physics, 2013, 15, 10376.	2.8	52
49	Enhanced Charge Carrier Mobility in Twoâ€Dimensional High Dielectric Molybdenum Oxide (Adv. Mater.) Tj ETQq1	10,7843 21.0	14 rgBT /0
50	Transition metal oxides – Thermoelectric properties. Progress in Materials Science, 2013, 58, 1443-1489.	32.8	302
51	MnO ₂ -Based Thermopower Wave Sources with Exceptionally Large Output Voltages. Journal of Physical Chemistry C, 2013, 117, 9137-9142.	3.1	71
52	Characterization of metal contacts for two-dimensional MoS2 nanoflakes. Applied Physics Letters, 2013, 103, .	3.3	144
53	The anodized crystalline WO3 nanoporous network with enhanced electrochromic properties. Nanoscale, 2012, 4, 5980.	5.6	164
54	Enhancing the current density of electrodeposited ZnO–Cu2O solar cells by engineering their heterointerfaces. Journal of Materials Chemistry, 2012, 22, 21767.	6.7	74

#	Article	IF	CITATIONS
55	ZnO based thermopower wave sources. Chemical Communications, 2012, 48, 7462.	4.1	75
56	Atomically thin layers of MoS ₂ via a two step thermal evaporation–exfoliation method. Nanoscale, 2012, 4, 461-466.	5.6	254