Sivacarendran Balendhran

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4497653/publications.pdf

Version: 2024-02-01

56 5,255 35
papers citations h-index

54
g-index

8318
d citing authors

161849

59 all docs

59 docs citations 59 times ranked

#	Article	IF	CITATIONS
1	Elemental Analogues of Graphene: Silicene, Germanene, Stanene, and Phosphorene. Small, 2015, 11, 640-652.	10.0	725
2	Twoâ€Dimensional Molybdenum Trioxide and Dichalcogenides. Advanced Functional Materials, 2013, 23, 3952-3970.	14.9	443
3	Enhanced Charge Carrier Mobility in Twoâ€Dimensional High Dielectric Molybdenum Oxide. Advanced Materials, 2013, 25, 109-114.	21.0	355
4	Transition metal oxides – Thermoelectric properties. Progress in Materials Science, 2013, 58, 1443-1489.	32.8	302
5	Electrochemical Control of Photoluminescence in Two-Dimensional MoS ₂ Nanoflakes. ACS Nano, 2013, 7, 10083-10093.	14.6	282
6	Atomically thin layers of MoS ₂ via a two step thermal evaporation–exfoliation method. Nanoscale, 2012, 4, 461-466.	5 . 6	254
7	Two dimensional α-MoO3 nanoflakes obtained using solvent-assisted grinding and sonication method: Application for H2 gas sensing. Sensors and Actuators B: Chemical, 2014, 192, 196-204.	7.8	190
8	The anodized crystalline WO3 nanoporous network with enhanced electrochromic properties. Nanoscale, 2012, 4, 5980.	5.6	164
9	Highâ€Performance Field Effect Transistors Using Electronic Inks of 2D Molybdenum Oxide Nanoflakes. Advanced Functional Materials, 2016, 26, 91-100.	14.9	164
10	Field Effect Biosensing Platform Based on 2D α-MoO ₃ . ACS Nano, 2013, 7, 9753-9760.	14.6	161
11	Characterization of metal contacts for two-dimensional MoS2 nanoflakes. Applied Physics Letters, 2013, 103, .	3.3	144
12	Ambient Protection of Fewâ€Layer Black Phosphorus via Sequestration of Reactive Oxygen Species. Advanced Materials, 2017, 29, 1700152.	21.0	141
13	Actively variable-spectrum optoelectronics with black phosphorus. Nature, 2021, 596, 232-237.	27.8	132
14	Black phosphorus: ambient degradation and strategies for protection. 2D Materials, 2018, 5, 032001.	4.4	119
15	Nanostructured copper oxides as ethanol vapour sensors. Sensors and Actuators B: Chemical, 2013, 185, 620-627.	7.8	118
16	Nanoscale Resistive Switching in Amorphous Perovskite Oxide (<i>aâ€</i> SrTiO ₃) Memristors. Advanced Functional Materials, 2014, 24, 6741-6750.	14.9	111
17	Defining the role of humidity in the ambient degradation of few-layer black phosphorus. 2D Materials, 2017, 4, 015025.	4.4	110
18	CNT/PDMS composite membranes for H2 and CH4 gas separation. International Journal of Hydrogen Energy, 2013, 38, 10494-10501.	7.1	97

#	Article	IF	Citations
19	Degradation of black phosphorus is contingent on UVâ \in "blue light exposure. Npj 2D Materials and Applications, 2017, 1, .	7.9	95
20	ZnO based thermopower wave sources. Chemical Communications, 2012, 48, 7462.	4.1	75
21	Enhancing the current density of electrodeposited ZnO–Cu2O solar cells by engineering their heterointerfaces. Journal of Materials Chemistry, 2012, 22, 21767.	6.7	74
22	MnO ₂ -Based Thermopower Wave Sources with Exceptionally Large Output Voltages. Journal of Physical Chemistry C, 2013, 117, 9137-9142.	3.1	71
23	Donorâ€Induced Performance Tuning of Amorphous SrTiO ₃ Memristive Nanodevices: Multistate Resistive Switching and Mechanical Tunability. Advanced Functional Materials, 2015, 25, 3172-3182.	14.9	68
24	Edge-oriented and steerable hyperbolic polaritons in anisotropic van der Waals nanocavities. Nature Communications, 2020, 11, 6086.	12.8	67
25	Proton intercalated two-dimensional WO ₃ nano-flakes with enhanced charge-carrier mobility at room temperature. Nanoscale, 2014, 6, 15029-15036.	5.6	66
26	Liquidâ€Metal Synthesized Ultrathin SnS Layers for Highâ€Performance Broadband Photodetectors. Advanced Materials, 2020, 32, e2004247.	21.0	66
27	Anodic formation of a thick three-dimensional nanoporous WO3 film and its photocatalytic property. Electrochemistry Communications, 2013, 27, 128-132.	4.7	58
28	Engineering electrodeposited ZnO films and their memristive switching performance. Physical Chemistry Chemical Physics, 2013, 15, 10376.	2.8	52
29	Low-Temperature Fabrication of Alkali Metal–Organic Charge Transfer Complexes on Cotton Textile for Optoelectronics and Gas Sensing. Langmuir, 2015, 31, 1581-1587.	3.5	51
30	Large-area synthesis of 2D MoO _{3â^' <i>x</i>} for enhanced optoelectronic applications. 2D Materials, 2019, 6, 035031.	4.4	48
31	Dual Selective Gas Sensing Characteristics of 2D α-MoO _{3–<i>x</i>} via a Facile Transfer Process. ACS Applied Materials & Transfer Process.	8.0	47
32	Reversible resistive switching behaviour in CVD grown, large area MoO _x . Nanoscale, 2018, 10, 19711-19719.	5.6	46
33	Electrically Activated UV-A Filters Based on Electrochromic MoO _{3â€"<i>x</i>} . ACS Applied Materials & Long Theorem (1997) (1998) (1	8.0	45
34	Spectrally Selective Mid-Wave Infrared Detection Using Fabry-Pérot Cavity Enhanced Black Phosphorus 2D Photodiodes. ACS Nano, 2020, 14, 13645-13651.	14.6	41
35	3-D nanorod arrays of metal–organic KTCNQ semiconductor on textiles for flexible organic electronics. RSC Advances, 2013, 3, 17654.	3.6	40
36	Effects of plasma-treatment on the electrical and optoelectronic properties of layered black phosphorus. Applied Materials Today, 2018, 12, 244-249.	4.3	38

#	Article	IF	Citations
37	Long-Wave Infrared Photodetectors Based on 2D Platinum Diselenide atop Optical Cavity Substrates. ACS Nano, 2021, 15, 6573-6581.	14.6	29
38	Light–Matter Interaction Enhancement in Anisotropic 2D Black Phosphorus via Polarization-Tailoring Nano-Optics. ACS Photonics, 2021, 8, 1120-1128.	6.6	20
39	Compact Chemical Identifier Based on Plasmonic Metasurface Integrated with Microbolometer Array. Laser and Photonics Reviews, 2022, 16, .	8.7	17
40	Mixed Ionicâ€Electronic Charge Transport in Layered Blackâ€Phosphorus for Lowâ€Power Memory. Advanced Functional Materials, 2022, 32, 2107068.	14.9	16
41	Generating strong room-temperature photoluminescence in black phosphorus using organic molecules. 2D Materials, 2019, 6, 015009.	4.4	15
42	Two-dimensional MoO ₃ via a top-down chemical thinning route. 2D Materials, 2017, 4, 035008.	4.4	14
43	Monocrystalline Antimonene Nanosheets via Physical Vapor Deposition. Advanced Materials Interfaces, 2020, 7, 2001678.	3.7	14
44	Midâ€Wave Infrared Polarizationâ€Independent Graphene Photoconductor with Integrated Plasmonic Nanoantennas Operating at Room Temperature. Advanced Optical Materials, 2021, 9, 2001854.	7.3	11
45	Copper Tetracyanoquinodimethane (CuTCNQ): A Metal–Organic Semiconductor for Room-Temperature Visible to Long-Wave Infrared Photodetection. ACS Applied Materials & Long-Wave Infrared Photodetection. ACS Applied Mate	8.0	10
46	Enhanced Charge Carrier Mobility in Twoâ€Dimensional High Dielectric Molybdenum Oxide (Adv. Mater.) Tj ETQc	0 0 0 rgB 21.0	T /Øverlock 10
47	Nonvolatile Resistive Switching in Layered InSe via Electrochemical Cation Diffusion. Advanced Electronic Materials, 2022, 8, .	5.1	8
48	Visible to Short-Wave Infrared Photodetectors Based on ZrGeTe ₄ van der Waals Materials. ACS Applied Materials & Samp; Interfaces, 2021, 13, 45881-45889.	8.0	7
49	Semiconductors: Twoâ€Dimensional Molybdenum Trioxide and Dichalcogenides (Adv. Funct. Mater.) Tj ETQq1 1	0.784314 14.9	rgBT /Over <mark>lo</mark>
50	Helicity-selective Raman scattering from in-plane anisotropic \hat{l}_{\pm} -MoO3. Applied Physics Letters, 2021, 119, .	3.3	6
51	Broadband Photodetectors: Liquidâ€Metal Synthesized Ultrathin SnS Layers for Highâ€Performance Broadband Photodetectors (Adv. Mater. 45/2020). Advanced Materials, 2020, 32, 2070338.	21.0	2
52	Charge injection in vertically stacked multi-layer black phosphorus. Applied Materials Today, 2020, 18, 100481.	4.3	1
53	Longwave Infrared Photoresponse in Copper 7,7,8,8-tetracyano-2,3,5,6-tetraflouroquinodimethane (CuTCNQF4). , 2021, , .		0
54	Visible to Long-Wave Infrared Photodetectors based on Copper Tetracyanoquinodimethane (CuTCNQ) Crystals. , 2020, , .		0

#	Article	IF	CITATIONS
55	Compact Chemical Identifier Based on Plasmonic Metasurface Integrated with Microbolometer Array (Laser Photonics Rev. 16(4)/2022) Laser and Photonics Reviews, 2022, 16, 2270016	8.7	O

Experimental and theoretical characterization of x-ray induced excitons, magnons, and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mml:mi>d</mm 56