Owen J L Rackham

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4497528/publications.pdf

Version: 2024-02-01

54 papers

8,877 citations

28 h-index 52 g-index

68 all docs 68
docs citations

68 times ranked

18415 citing authors

#	Article	IF	CITATIONS
1	An atlas of active enhancers across human cell types and tissues. Nature, 2014, 507, 455-461.	13.7	2,269
2	A promoter-level mammalian expression atlas. Nature, 2014, 507, 462-470.	13.7	1,838
3	An atlas of human long non-coding RNAs with accurate 5′ ends. Nature, 2017, 543, 199-204.	13.7	898
4	A single-cell atlas of entorhinal cortex from individuals with Alzheimer's disease reveals cell-type-specific gene expression regulation. Nature Neuroscience, 2019, 22, 2087-2097.	7.1	591
5	IL-11 is a crucial determinant of cardiovascular fibrosis. Nature, 2017, 552, 110-115.	13.7	451
6	A predictive computational framework for direct reprogramming between human cell types. Nature Genetics, 2016, 48, 331-335.	9.4	263
7	Titin-truncating variants affect heart function in disease cohorts and the general population. Nature Genetics, 2017, 49, 46-53.	9.4	255
8	Modelling human blastocysts by reprogramming fibroblasts into iBlastoids. Nature, 2021, 591, 627-632.	13.7	211
9	SUPERFAMILY 1.75 including a domain-centric gene ontology method. Nucleic Acids Research, 2011, 39, D427-D434.	6.5	147
10	Transcriptional signature in microglia associated with ${\rm A\hat{l}^2}$ plaque phagocytosis. Nature Communications, 2021, 12, 3015.	5.8	142
11	Systems genetics identifies a convergent gene network for cognition and neurodevelopmental disease. Nature Neuroscience, 2016, 19, 223-232.	7.1	131
12	ReprogrammingÂroadmap reveals route toÂhuman induced trophoblast stem cells. Nature, 2020, 586, 101-107.	13.7	131
13	Potassium channel dysfunction in human neuronal models of Angelman syndrome. Science, 2019, 366, 1486-1492.	6.0	118
14	Update of the FANTOM web resource: high resolution transcriptome of diverse cell types in mammals. Nucleic Acids Research, 2017, 45, D737-D743.	6.5	116
15	Functional annotation of human long noncoding RNAs via molecular phenotyping. Genome Research, 2020, 30, 1060-1072.	2.4	109
16	Characterising the loss-of-function impact of 5' untranslated region variants in 15,708 individuals. Nature Communications, 2020, 11, 2523.	5.8	99
17	Widespread Translational Control of Fibrosis in the Human Heart by RNA-Binding Proteins. Circulation, 2019, 140, 937-951.	1.6	95
18	The Evolution and Structure Prediction of Coiled Coils across All Genomes. Journal of Molecular Biology, 2010, 403, 480-493.	2.0	85

#	Article	IF	Citations
19	ShinyCell: simple and sharable visualization of single-cell gene expression data. Bioinformatics, 2021, 37, 3374-3376.	1.8	83
20	deltaTE: Detection of Translationally Regulated Genes by Integrative Analysis of Riboâ€seq and RNAâ€seq Data. Current Protocols in Molecular Biology, 2019, 129, e108.	2.9	77
21	The SUPERFAMILY 1.75 database in 2014: a doubling of data. Nucleic Acids Research, 2015, 43, D227-D233.	6.5	74
22	Coding and non-coding roles of MOCCI (C15ORF48) coordinate to regulate host inflammation and immunity. Nature Communications, 2021, 12, 2130.	5.8	56
23	Genome3D: a UK collaborative project to annotate genomic sequences with predicted 3D structures based on SCOP and CATH domains. Nucleic Acids Research, 2012, 41, D499-D507.	6.5	53
24	Cell Type of Origin Dictates the Route to Pluripotency. Cell Reports, 2017, 21, 2649-2660.	2.9	49
25	A daily-updated tree of (sequenced) life as a reference for genome research. Scientific Reports, 2013, 3, 2015.	1.6	47
26	<scp>RNA</scp> polymerase <scp>II</scp> primes Polycombâ€repressed developmental genes throughout terminal neuronal differentiation. Molecular Systems Biology, 2017, 13, 946.	3.2	44
27	WWP2 regulates pathological cardiac fibrosis by modulating SMAD2 signaling. Nature Communications, 2019, 10, 3616.	5.8	44
28	Genome3D: exploiting structure to help users understand their sequences. Nucleic Acids Research, 2015, 43, D382-D386.	6.5	42
29	A high-resolution map of human RNA translation. Molecular Cell, 2022, 82, 2885-2899.e8.	4.5	37
30	Exploring uncertainties in the relationship between temperature, ice volume, and sea level over the past 50 million years. Reviews of Geophysics, 2012, 50, .	9.0	33
31	EvoTol: a protein-sequence based evolutionary intolerance framework for disease-gene prioritization. Nucleic Acids Research, 2015, 43, e33-e33.	6.5	33
32	WGBSSuite: simulating whole-genome bisulphite sequencing data and benchmarking differential DNA methylation analysis tools. Bioinformatics, 2015, 31, 2371-2373.	1.8	30
33	GeneSwitches: ordering gene expression and functional events in single-cell experiments. Bioinformatics, 2020, 36, 3273-3275.	1.8	27
34	A Ca2+-based computational model for NDMA receptor-dependent synaptic plasticity at individual post-synaptic spines in the hippocampus. Frontiers in Synaptic Neuroscience, 2010, 2, 31.	1.3	25
35	Computational Stem Cell Biology: Open Questions and Guiding Principles. Cell Stem Cell, 2021, 28, 20-32.	5.2	18
36	A Bayesian Approach for Analysis of Whole-Genome Bisulfite Sequencing Data Identifies Disease-Associated Changes in DNA Methylation. Genetics, 2017, 205, 1443-1458.	1.2	14

#	Article	IF	CITATIONS
37	The Evolution of Human Cells in Terms of Protein Innovation. Molecular Biology and Evolution, 2014, 31, 1364-1374.	3.5	13
38	Computational methods for direct cell conversion. Cell Cycle, 2016, 15, 3343-3354.	1.3	13
39	EpiMogrify Models H3K4me3 Data to Identify Signaling Molecules that Improve Cell Fate Control and Maintenance. Cell Systems, 2020, 11, 509-522.e10.	2.9	10
40	Whole-Genome Sequencing of Finnish Type 1 Diabetic Siblings Discordant for Kidney Disease Reveals DNA Variants associated with Diabetic Nephropathy. Journal of the American Society of Nephrology: JASN, 2020, 31, 309-323.	3.0	10
41	Integrated systemsâ€genetic analyses reveal a network target for delaying glioma progression. Annals of Clinical and Translational Neurology, 2019, 6, 1616-1638.	1.7	8
42	A $\scp>P$ roteome $\scp>Q$ uality $\scp>I$ ndex. Environmental Microbiology, 2015, 17, 4-9.	1.8	6
43	Cardiomyocyte BRAF and type 1 RAF inhibitors promote cardiomyocyte and cardiac hypertrophy in mice <i>in vivo</i> . Biochemical Journal, 2022, 479, 401-424.	1.7	6
44	Function-selective domain architecture plasticity potentials in eukaryotic genome evolution. Biochimie, 2015, 119, 269-277.	1.3	5
45	Challenges for Computational Stem Cell Biology: A Discussion for the Field. Stem Cell Reports, 2021, 16, 3-9.	2.3	4
46	Intestinal stem cell aging signature reveals a reprogramming strategy to enhance regenerative potential. Npj Regenerative Medicine, 2022, 7, .	2.5	4
47	PKN2 deficiency leads both to prenatal â€~congenital' cardiomyopathy and defective angiotensin II stress responses. Biochemical Journal, 2022, 479, 1467-1486.	1.7	4
48	Evaluating Capture Sequence Performance for Single-Cell CRISPR Activation Experiments. ACS Synthetic Biology, 2021, 10, 640-645.	1.9	3
49	Molecular Interaction Networks to Select Factors for Cell Conversion. Methods in Molecular Biology, 2019, 1975, 333-361.	0.4	2
50	Synthetic biology: at the crossroads of genetic engineering and human therapeutics—a Keystone Symposia report. Annals of the New York Academy of Sciences, 2021, , .	1.8	2
51	Web-based Gene Pathogenicity Analysis (WGPA): a web platform to interpret gene pathogenicity from personal genome data. Bioinformatics, 2016, 32, 635-637.	1.8	1
52	Let it <scp>RE</scp> : <scp>IN</scp> : integrating experimental observations to predict pluripotency network behaviour. EMBO Journal, 2019, 38, .	3.5	0
53	Cell Type of Origin Dictates the Route to Pluripotency. SSRN Electronic Journal, 0, , .	0.4	0
54	CLIPreg: constructing translational regulatory networks from CLIP-, Ribo- and RNA-seq. Bioinformatics, 2022, 38, 3651-3653.	1.8	0